고체 물질은 전기 전도도에 따라 보통 절연체•반도체•도체로 나뉜다. 그림1은 세 부류 중 몇 개의 중요한 물질의 전기전도도 및 이에 상응하는 비저항을 나타내고 있다. 반도체의 전도도는 절연체와 도체의 중간영역이며 일반적으로 온도•조명•자기장 및 미량의 불순물원자에 따라 그 전도도가 민감하게 달라진다. 예를 들면 특별한 종류의 불순물을 0.01% 이하로 첨가하여도 반도체의 전기전도도를 100,000배 이상 증가시킬 수 있다. 5종류의 반도체에 대해서 불순물원자에 의한 전기전도도의 변화폭이 그림1에 나타나 있다.

 


▲ <그림1> 반도체와 접합원리


반도체 물질의 연구는 19세기초에 시작되었으며 여러 해 동안 많은 반도체가 연구되었다. 표는 반도체와 관련된 주기율표의 일부를 보여주고 있다. 원소반도체는 한 종류의 원자로 구성된 반도체로, 예를 들면 Ⅳ족의 규소, 게르마늄, 회색 주석(Sn) 및 Ⅵ족의 셀렌(Se)과 텔루르(Te) 등이 있다. 그러나 두 종류 또는 그 이상의 원소들로 구성된 수많은 화합물반도체도 있다. 이것들은 구성하는 원소의 수에 따라 이원화합물반도체•삼원화합물반도체•사원화합물반도체 등으로 불린다. 예를 들면 비소화갈륨은 이원 Ⅲ-Ⅴ족 화합물반도체로 Ⅲ족의 갈륨(Ga)과 Ⅴ족의 비소(As) 결합으로 이루어져 있다. 삼원화합물반도체는 3개의 다른 족의 원소에 의해서 형성될 수 있다. 예를 들면 텔루르화인듐수은(HgIn2Te4)은 Ⅱ-Ⅲ-Ⅴ 화합물이다. 이것들은 두 족의 원소에 의해서 형성될 수도 있다. 예를 들면 비소화갈륨알루미늄(AlxGa1-xAs)은 3원 Ⅲ-V족 화합물반도체로 Ⅲ족인 알루미늄(Al), 갈륨과 V족인 비소로 되어 있다. 여기서 x는 알루미늄과 갈륨의 비율을 나타낸다.

 

1947년에 트랜지스터가 발명되기 전에 반도체는 정류기와 광전 다이오드 같은 이단자 소자에만 사용되었다. 1950년대초에는 게르마늄이 주요 반도체 물질이었다. 그러나 이것은 많은 응용 부문에 부적당하다는 것이 밝혀졌는데, 그 이유는 만들어진 소자가 온도가 약간만 높아도 높은 누설 전류를 보였기 때문이다. 1960년대 이래 규소가 실제적인 대체물이 되어서 반도체 제조 물질로서 게르마늄을 몰아내게 되었다. 이것에 대한 이유는 첫째로 실리콘(규소) 소자는 누설전류가 아주 적다는 것과, 둘째로 반도체 소자제조에 필요한 절연체인 양질의 이산화규소(SiO2, 즉 실리콘산화막)를 만들기 쉽다는 것이다. 현재 실리콘 기술은 모든 반도체 기술 중에서 가장 앞서 있으며, 실리콘에 바탕을 둔 소자는 세계시장에서 반도체 부품의 95% 이상을 차지하고 있다. 많은 화합물 반도체는 규소가 가지고 있지 않은 전기적 및 광학적 성질을 가지고 있다. 이 반도체들, 특히 비소화갈륨 반도체는 주로 고속•광전자 부문에 사용되고 있다.



>> 브리태니커 사전 전문 보기

 

 

Posted by  Mr.반           

 

'Semiconductor > 반도체 사전' 카테고리의 다른 글

이단자접합 소자  (0) 2014.08.07
p-n 접합  (0) 2014.07.30
반도체의 전기적 성질  (0) 2014.07.23
반도체와 접합원리  (0) 2014.07.16
반도체의 일반적인 성질  (0) 2014.07.08
반도체 (Semiconductor)  (0) 2014.06.20

Comments : 댓글을 달아주세요

댓글을 달아 주세요



지난 글에서 이미 알아본 바와 같이, 실리콘을 기반으로 트랜지스터 크기를 줄여 반도체의 성능을 높이는 방법은 결국 궁극에는 한계에 도달하기 마련이다. 그래서 과학자들은 실리콘이 아닌 다른 물질들을 연구하기 시작했다. 이번 호에는 TV나 인터넷에서 들어본 듯한 것 중에 논의가 많이 되는 두 가지, 실리콘보다 성능이 좋다는 ‘그래핀 (Graphene)’ 이라는 물질과 획기적으로 연산 속도가 빠르다는 ‘양자 컴퓨터 (Quantum computer)’에 대해 알아보려 한다.

 

 

실리콘 반도체의 한계


반도체 실리콘의 원료가 되는 규소는 지구 상에서 산소 다음으로 많이 차지하는 물질이다. 우리 주위에 보이는 흙 대부분의 구성이 실리콘의 원료인 ‘규소(Silicon)’다. 지금까지 50여 년간 스위치 역할을 하는 반도체 트랜지스터는 실리콘 위에 만들어져 왔는데, 그렇다고 반드시 그래야만 한다는 법은 없었다. 그저 구하기 쉽고 값싸기 때문이었다. 하지만 아무리 값싸고 구하기 쉬운 실리콘 반도체라 할지라도 점점 성능 개선에서 구조적인 한계를 보이게 되었고, 이제는 많은 과학자가 실리콘보다 더 성능이 좋아질 수 있는 새로운 물질을 개발하는 중이다.

 

 

 

그래핀


탄소가 주성분이고 연필심을 만드는 원료인 흑연을 의미하는 ‘그래핀(Graphene)’은 그래파이트(Graphite)에서 유래되었다. 그래서 원자의 구조도 연필심과 같으며, 벌집 같은 육각형 형태의 면이다. 이 육각형 구조의 면 그래핀을 여러 층으로 쌓아 놓으면 연필심 구조인 흑연이 된다. 그래서 처음 이 그래핀이 발견된 방법도 매우 단순했다. 스카치테이프에 흑연을 붙이고, 이렇게 붙은 흑연에 또 다른 테이프로 붙였다가 떼어 내기를 반복하다 보면 여러 층이었던 흑연 탄소 구조가 어느 순간 한쪽 테이프에 한 층짜리 흑연 구조로 남는데, 이것이 바로 그래핀이다.

 

그래핀의 두께는 약 0.2nm(nanometer, 나노미터)로, 사람이 인공적으로 만든 물질 중에 가장 얇은 두께라 한다. 그래서 이것을 백만 장 쌓아도 그 두께는 겨우 0.2mm밖에 되지 않는다. 우리가 사용하는 A4용지 한 장의 두께가 약 0.1mm라고 하니, 겨우 A4용지 두 장 두께밖에 안 된다는 말이다.

 

▲ <사진1> 흑연, 풀러렌, 탄소 나노 튜브, 그래핀

 

탄소는 결정 구조 및 형상에 따라 여러 이름을 가진다. 지금까지 설명한 것처럼 탄소들이 넓게 펼쳐진 한 장의 구조를 그래핀이라 하고, 그 그래핀을 돌돌 말아 원통으로 만들면 ‘탄소나노 튜브(Carbone Nano tube)’가 되며, 공처럼 둥글게 말려 있으면 ‘풀러렌(Fullerene)’이라고 한다. 또한, 탄소가 흑연처럼 면으로 된 2차원 구조가 아닌 3차원 구조로 형성되면 값비싼 다이아몬드가 되기도 한다.

 

이처럼 얇은 두께의 흑연이라 할 수 있는 그래핀이 왜 주목을 받는 것일까? 지구 상에서 두 번째로 전기가 잘 통하는 금속인 그래핀은 구리보다 10배 이상 전기가 잘 통한다. 그래서 실리콘보다 전자 이동 속도가 100배 이상 빠르다. 게다가 다이아몬드보다 열 전도성이 2배 이상 높다. 강도는 강철보다 200배 이상 강하지만, 두께가 매우 얇아 부러지지 않고 180도 휠 수 있으며 빛을 98% 통과시킬 정도로 거의 투명하다.

 

그래서 이 같은 성질들을 이용하면 휘어지는 화면이 가능해진다. 현재 우리나라에서는 LCD 제작 회사들이 그래핀에 더 많은 연구와 투자를 한다. 덕분에 우리나라는 세계에서 가장 많은 그래핀 기술 관련 원천 특허를 보유하고 있으며, 가장 앞선 기술을 보유하게 되었다. 근래 들어 구글 안경이나 갤럭시 기어와 같은 ‘입는 전자 제품(Wearable device)’이라는 말과 함께 ‘휘어지는 디스플레이(Display)’를 채용한 제품이 조만간 출시된다는 뉴스를 보기도 하는데, 이들 대부분이 그래핀을 이용한 제품들이라 보면 된다.

 

그동안 반도체 재료로 사용되던 실리콘은 아래 표에서 보듯, 재료 자체의 저항이 작지 않아서 전기를 흐르지 않게 하는 것보다는 특정 조건에서 전기가 잘 흐르게 하는 기술이 필요했다. 하지만 그래핀은 위 설명에서처럼 전기적 특성이 거의 금속 성질과 비슷해 재료 자체는 전기가 매우 잘 흐르는 도체에 가깝다. 그래서 실리콘과는 달리 오히려 특정 조건에서 전기를 흐르지 못하게 하는 기술이 필요하다. 

 

▲ <사진2> 재료별 전기저항

 

앞으로 반도체 분야에서 그래핀을 이용한 연구가 더욱 활발해져서 이처럼 뛰어난 전기 및 열 전도성을 가진 그래핀에 트랜지스터 기능을 만들 수 있다면, 실리콘 위에 트랜지스터를 만든 것보다 훨씬 뛰어난 성능의 반도체를 만들 수 있을 것이다. 그렇기에 그래핀이 차세대 반도체 재료로서 주목받는 것이다. 반도체 과학자들은 빠르면 2020년에 그래핀을 활용한 반도체가 개발될 수 있을 것으로 전망했다.

 

글쓴이 / 기술연구소 개발2팀 김윤주 부장(前)

 


Comments : 댓글을 달아주세요

댓글을 달아 주세요

 

반도체의 일반적인 성질

 

 

전기전도도가 도체와 절연체의 중간 정도인 결정형 고체들.

 

반도체 물질들은 고유반도체(원소 반도체)와 불순물반도체의 일반적인 2개 그룹으로 나눌 수 있다. 고유반도체는 화학적 순도가 대단히 높고(이 물질들은 1012에 1개 정도의 불순물을 포함함), 전기전도도가 아주 낮으며, 온도에 따라 전기전도도가 크게 변한다. 흔히 쓰이는 고유반도체로는 규소(Si), 게르마늄(Ge), 비소화갈륨(GaAs)의 단결정들이 있다. 이러한 물질들에 일반적으로 106에 1개 정도의 불순물을 첨가하면 기술적으로 더욱 중요한 불순물반도체로 된다. 이 과정을 도핑(doping)이라고 하며, 이것은 물질의 전기적 성질을 변화시켜서 전기전도도를 갑자기 크게 한다. 예를 들어 규소 원소 같은 고유반도체의 원자는 4개의 최외각 전자를 가지고 있다. 이 전자들은 규소원자를 그것에 이웃하는 원자와 결합시켜주고 있어서 고체 내에서 자유롭게 움직일 수 없다. 따라서 순수한 규소는 전기전도성이 나쁘다.

 

만약 5개의 최외각 전자를 가진 인(P) 원자가 불순물로 일부의 규소원자를 치환한다면 이웃한 원자들을 결합시키는 데 있어 5번째의 전자는 필요하지 않으므로 이 전자는 자유롭게 움직일 수 있다. 반면 붕소와 같은 형의 불순물원자들은 규소보다 최외각 전자가 1개 적으므로, 붕소원자로 규소원자를 치환한다면 두 원자 사이에 하나의 전자가 모자라 빈 공간을 남기게 된다. 이를 양공 (hole)이라 하는데, 이들은 양전하를 가진 입자처럼 행동하므로 역시 전기전도도를 높여준다(→ 색인 : 양공). 100만 개의 원자에 10개의 붕소원자만 들어가더라도 불순물반도체가 된다. 불순물반도체는 첨가된 불순물이 고유반도체보다 전자를 하나 더 갖거나 혹은 하나가 부족한 두 종류에 따라서 각각 n-형과 p-형으로 구분된다. 반면 전하운반자의 밀도가 거의 같더라도 어떤 특별한 환경에서 전자와 양공의 이동도(mobility)가 다르기 때문에 고유반도체도 n-형과 p-형으로 구분될 수도 있다. 이런 경우에는 이동도가 가장 큰 전하운반자가 전도과정을 지배한다.



>> 브리태니커 사전 전문 보기

 

 

 

Posted by  Mr.반           


'Semiconductor > 반도체 사전' 카테고리의 다른 글

이단자접합 소자  (0) 2014.08.07
p-n 접합  (0) 2014.07.30
반도체의 전기적 성질  (0) 2014.07.23
반도체와 접합원리  (0) 2014.07.16
반도체의 일반적인 성질  (0) 2014.07.08
반도체 (Semiconductor)  (0) 2014.06.20

Comments : 댓글을 달아주세요

댓글을 달아 주세요

 


반도체란 무엇일까. 분명히 우리 생활에 없어서는 안 될 정도로 아주 가까이에 있음에도 불구하고, 이 질문에 만족스러운 대답을 하는 사람은 생각보다 많지 않다. ‘전기가 통하기도 하고, 통하지 않기도 하는 물질’이라는 사전적인 의미만 이야기하는 사람들이 대부분. 그래서 총 세 번의 연재를 통해 반도체의 과거, 현재, 미래를 함께 살펴보면서 반도체에 대한 이해를 돕고자 한다.

 

 

반도체란 무엇인가


사전적 의미로 보면, 반도체는 말 그대로 전기가 잘 통하는 도체와 전기가 통하지 않는 부도체 중간의 물질, 그래서 딱 중간물질이라는 의미의 ‘반도체(半導體, semi-conductor)’다. 그럼 도체와 부도체의 중간물질이라는 반도체는 어떤 성질을 가진 물질인가. 반은 사람, 반은 물고기인 인어공주처럼 처음부터 서로 다른 성질의 물질 두 개를 붙여놓은 것일까. 아니면 치킨의 양념 반, 프라이드 반처럼 처음에는 같았던 것을 반으로 나누어 서로 다른 성질을 갖도록 만든 것일까. 아니면 영화 <트랜스포머>에 나오는 로봇들처럼 자동차와 로봇 사이를 맘대로 변화하는 것처럼 결국 그 근본은 같은 것이지만 필요에 따라 성질을 바꾸는 것일까.

 

 

이 중에서 반도체의 성질과 가장 비슷한 것을 고르라면, 그것은 아마 ‘트랜스포머’가 될 것이다. 하지만 트랜스포머보다 반도체를 더 비슷하게 잘 설명해줄 수 있는 것이 있다. 그것은 바로 두 얼굴을 가진 사나이 ‘헐크’다. 그렇다면 헐크와 트랜스포머와는 어떤 차이가 있을까. 둘 다 서로 다른 모습으로 변화하는 것은 같지만, 아주 중요한 차이가 있다. 트랜스포머는 로봇과 자동차로 변화하는 데 있어 자신의 의지로 언제든지 마음대로 바꿀 수 있지만, 괴물인 헐크는 그렇지 못하다. 평범한 인간에서 헐크로 바뀌는 데 있어서 자신의 의지가 아닌 자극으로 화가 나거나 흥분하면 괴물로 변하고, 그 외부 자극이 없어지고 흥분이 가라앉으면 다시 정상적인 인간으로 돌아온다.


이것을 다시 반도체와 결합해보자. ‘반도체란 외부 자극으로 전기가 흐르는 도체가 되거나 혹은 전기가 흐르지 않는 부도체가 되기도 하는 두 가지 성질을 임의로 조절할 수 있는 물질이다.’ 사전적 의미에 기술적 의미가 부가된 반도체의 정의라고 할 수 있다. 즉, 반도체는 수도꼭지처럼 외부에서 힘주어 열면 물이 흐르고 (도체), 잠그면 물이 흐르지 않는다 (부도체). 하지만 수도꼭지는 스스로 여닫고를 할 수 없다. 다시 말해, 반도체는 두 가지 성질을 다 가졌기에 양면성을 띠고 있다고 할 수 있다.


이렇게 외부 자극을 이용해 흐름을 조절할 수 있는 장치를 우리는 ‘스위치’라고 하는데, 앞서 설명한 반도체의 성질이 스위치의 성질과 비슷하다. 반도체의 여러 가지 기능 중에 가장 중요한 것도 바로 스위치 기능이다. 흔히 우리가 이야기하는 디지털 값인 ‘1’ 또는 ‘0’이라는 것이 반도체의 스위치 기능에 의해 전기가 흐르면 ‘1(on)’, 흐르지 않으면 ‘0(off)’이라고 표현할 수 있다. 이와 같은 스위치를 보통 ‘트랜지스터’라고 하는데, 이 트랜지스터 1개를 ‘1비트(bit)’라 하고, 이 비트가 8개 모이면 ‘1바이트(byte)’라고 한다. 우리가 물건을 셀 때 물건마다 다른 단위가 있는 것처럼 반도체 스위치 트랜지스터 개수를 셀 때의 단위를 ‘바이트’라고 이해하면 된다. 따라서 이 바이트는 반도체에 정보를 저장할 때 있어서 가장 최소 단위로, 쉽게 돈으로 비유하면 가장 최소 단위인 1원에 해당한다.


예를 들어, 어떤 반도체의 저장 용량이 ‘1메가(MB)’라고 하면 100만 바이트로, 1바이트는 8개의 비트 즉, 8개의 트랜지스터이니 그 반도체 안에 반도체 트랜지스터 스위치가 800만 개 만들어져 있다는 말이다. 그러면 ‘1기가(GB)’는 10억 바이트로 80억 개의 트랜지스터가 엄지손톱만 한 면적에 만들어져 있는 것이다.


그런데 80억 개라는 숫자가 얼마나 엄청난 집적도인지 감이 잘 오지 않을 것이다. 머리카락으로 비교해보자. 평균적으로 한 사람의 머리카락 개수는 약 10만 개다. 머리 묶을 때 10만 개가 다 묶어지지는 않지만, 대략 한 손에 모두 잡히는 한 움큼 정도가 된다. 그런데 이 머리카락 지름이 100㎛(0.1mm)라고 가정하고 머리카락 80억 개를 한 다발로 묶는다고 할 때 면적을 계산해 보면 약 62.8㎡, 즉 가로・세로의 길이가 각각 약 8m인 정사각형을 가득 채울 수 있는 면적이 된다. 웬만한 가정집 안방은 물론 거실보다도 넓은 면적이 된다.


이렇게 넓은 장소에 머리카락 두께의 작은 것을 촘촘히 배열해야 80억 개를 놓을 수 있는 숫자가 만들어진다면? 그리고 이 숫자를 엄지손톱만 한 면적에 넣었다면? 상상해보자. 정말 엄청난 집적도다.

 

 

 

반도체의 역사


반도체 원리의 시효는 ‘진공관’이다. 1970년대까지만 해도 라디오나 TV와 같은 전자제품에는 우리가 보는 반도체 대신 거의 진공관을 사용했다. 그런데 진공관은 부피가 너무 크고 전기도 많이 먹고 작동하는 데 시간이 오래 걸린다. 그 이유로 이를 대체할 수 있는 작고 효율적이며 빠르게 동작하는 장치를 고안하면서 지금의 반도체가 발명되었다. 그래서 당시 진공관을 사용했던 TV나 라디오는 전원을 켜면 지금처럼 바로 화면이나 소리가 나오지 않고 몇 분 기다려야 정상적인 화면이 나오거나 소리가 들렸다.

 

이렇게 불편한 진공관을 대체하는 반도체의 첫 번째 제품이라 할 수 있는 트랜지스터는, 전화기를 발명한 미국인 알렉산더 그레이엄 벨이 세웠던 벨 연구소에서 몇몇 과학자들에 의해 1947년 처음 개발됐다. 그리고 1961년 지금 우리의 고객인 TI(텍사스 인스트루먼트) 사에서 처음 양산을 시작한 후 지금의 인텔, 삼성과 같은 초거대 반도체 기업들이 탄생하게 되었다.

 

 

회사에서 일하다 보면 삼성, 인텔, TSMC라는 반도체 회사들의 이름을 듣게 된다. 이들이 생산하는 반도체들은 어떻게 다를까. 삼성에서는 신문 몇 년 치를 반도체 칩 하나에 모두 보관할 수 있는 몇 기가 램(RAM)을 만들었다고 하고, 인텔은 초당 연산 속도가 얼마인데 이는 1초 만에 무엇을 계산할 수 있는 속도라고 하면서 펜티엄 칩, 혹은 듀얼 코어 칩을 만들었다고 한다. 하나는 저장 용량을 광고하고 하나는 연산 속도를 광고하는데, 무엇이 다른 걸까.

 

우리는 흔히 반도체라고 하면 두 가지를 이야기한다. 저장이 주기능인 메모리 분야와 CPU와 같이 연산이 주기능인 로직(logic) 회로를 만드는 비메모리 분야다. 즉, 종이 매체로 비유하면 일기나 필기와 같은 기록을 위한 공책을 만드는 것이 메모리 분야고, 흥미 가득한 내용이 이미 인쇄된 책을 만드는 것이 비메모리 분야라고 이해를 하면 쉬울 듯하다. 당연히 똑같이 종이를 원료로 사용한다는 것은 같지만, 공책을 만들어 파는 것보다는 책을 만들어 파는 것이 더욱 이득이 높으므로 삼성도 이미 메모리 분야에서 세계 1위임에도 불구하고 꾸준히 비메모리 분야에 투자하면서 이 사업 분야에 더욱 집중하는 것이다.

 

사실 인텔도 처음에는 CPU뿐만 아니라 메모리를 생산했던 시절이 있었다. 삼성 덕분에 익숙해진 DRAM이란 메모리도 인텔이 최초로 만들었다. 하지만 일본 반도체 회사들이 메모리 반도체 시장에 진입함에 따라 경쟁이 치열해졌고 수익성 악화가 발생했다. 이에 따라 인텔이 1985년부터 과감하게 메모리 사업을 축소하거나 포기하면서 CPU와 같은 비메모리 분야에 전념하게 되었다. 그래서 1980년대 중후반에 386과 486칩이 나왔고, 곧이어 1990년대에 펜티엄 칩이 개발되었다. 이어 일본 메모리 반도체 회사들도 1990년대 들어 가장 늦게 반도체 시장에 뛰어든 우리나라의 삼성과 하이닉스의 추격에 그만 덜미를 잡히고 몰락의 길을 걸었다.

 

이번에는 반도체에 대한 이해와 개발의 역사에 대해 간단히 살펴보았다. 다음에는 세계 거대 반도체 기업들이 몇십 년 만에 흥하기도 하고 망하기도 하는 이 치열한 반도체 시장에서, 지금껏 살아남은 반도체 회사들이 경쟁을 유지하고 생존하기 위해 개발하는 반도체 기술들에 대해 살펴보겠다.

 

 

글쓴이 / 기술연구소 개발2팀 김윤주 부장 (前)

 


Comments : 댓글을 달아주세요

댓글을 달아 주세요

  1. 2014.08.24 22:38 Address Modify/Delete Reply

    비밀댓글입니다

  2. 이도 2014.11.03 17:48 신고 Address Modify/Delete Reply

    정말 재밌게 잘 읽었습니다

반도체 (Semiconductor)


반도체(半導體, semiconductor)란 전기가 잘 통하는 도체와 통하지 않는 절연체의 중간적인 성질을 나타내는 물질이다. 오늘날 전자기기에 널리 사용되는 반도체들은 열, 빛, 자장, 전압, 전류 등의 영향으로 그 성질이 크게 바뀌는데, 이 특징에 의해 매우 다양한 용도로 활용되고 있다.


‘반도체’라는 말은 ‘semiconductor’의 ‘semi-(반)’와 ‘conductor(도체)’라는 단어에서 유래한 것이다.


초기의 반도체 재료는 주기율표에서 4족 원소인 게르마늄이 사용되었으나, 오늘날에는 대부분 실리콘을 주원료로 사용하고 있다. 미국의 윌리엄 브래드포드 쇼클리(William Bradford Shockley)는 도체나 진공 속으로만 다니던 전자가 완전 도체도 절연체도 아닌 반도체라는 고체 안에 존재하면서 흥미로운 특성을 갖게 된다는 사실을 처음으로 발견하였다.


▲ <사진> 윌리엄 브래드포드 쇼클리 (1910~1989)





Posted by  Mr.반           

'Semiconductor > 반도체 사전' 카테고리의 다른 글

이단자접합 소자  (0) 2014.08.07
p-n 접합  (0) 2014.07.30
반도체의 전기적 성질  (0) 2014.07.23
반도체와 접합원리  (0) 2014.07.16
반도체의 일반적인 성질  (0) 2014.07.08
반도체 (Semiconductor)  (0) 2014.06.20

Comments : 댓글을 달아주세요

댓글을 달아 주세요



지난 글에서는 반도체가 상용화된 후, 너무 작아진 게이트 렝스가 '누설전류'를 유발하기 시작했다는 점을 언급했다. 그래서 반도체 제조 업체들이 게이트 렝스를 줄이고 게이트 절연체 두께를 얇게 만들어도 누설전류가 최소화되는 방법을 연구하기 시작했다. 이번 글에서는 누설전류를 해결하기 위해 등장한 대표적인 기술인 'High-K'와 'Fin-FET'에 대해 알아볼 것이다.


High-K


우리가 지금까지 많이 들어본 ‘Low-K’는 반도체의 트랜지스터 부분이 아닌, 트랜지스터에 입력되거나 출력되어 나온 전류 혹은 신호들이 전달되는 일반 금속 배선들에 사용되는 절연 물질이다.즉, 전기 스위치를 예를 들면 <그림2>에서 보는 것과 같이 High-K는 스위치 역할을 하는 게이트에 사용되는 절연 물질이고, Low-K는 그 스위치에 입력 혹은 출력되는 배선에 사용되는 물질이다. 이들은 절연이라는 기본 기능은 같지만 특성은 매우 다르다. Low-K에 대한 설명은 2009년 10월호 사보 [미래로 가는 패키지]에서 소개된바 있다.


High-K 게이트 아래에 있는 절연 물질을 일반적으로 게이트 산화물(Gate oxide)이라고 하는데 실리콘을 고온으로 높여 산화실리콘을 형성함으로써 만든다. 그런데 이 산화실리콘을 점점 얇게 하면 그만큼 적은 게이트 전류에도 트랜지스터 스위치를 작동하게 할 수 있다는 이점이 있고, 그만큼 게이트 조절 전류값을 낮출 수 있어서 트랜지스터에서 소비되는 전력을 아낄 수 있었다. 하지만 산화실리콘이 너무 얇으면, 이를 통해 누설전류가 발생하는 부작용이 나타나 그 두께 일정 이하로 얇게 만들 수가 없었다. 그래서 더이상 누설전류가 증가하지 않도록 절연층 두께를 기존과 같이 그대로 두고, 대신 게이트 조절 전류값이 낮아도 전류 자극이 잘 전달이 될 수 있는 물질을 개발하게 되었는데, 이와 같은 물질이 ‘High-K’다.


Fin-FET


중국 요리에 상어 지느러미로 만든 ‘샥스핀’이라는 요리가 있다. 상어가 영어로 샤크(Shark)고, 지느러미가 영어로 핀(Fin)이라고 해서 이 두 단어가 합쳐져 샥스핀(Shark’s Fin)이라고 부른다. FET은 ‘Field Effect Transistor’의 약자로 반도체 트랜지스터를 작동시키는 원리라고만 이해하고 넘어가자. 기존 FET에 비해 새롭게 개발된 이 FET이 물고기 지느러미를 닮았다고 해서 Fin-FET이라고 불리게 되었다. 이제 아래 그림을 보자. <그림3>은 인텔 기술 세미나에서 발표된 자료에서 인용된 것으로, 기존의 평면 FET와 Fin-FET 트랜지스터의 차이를 보여준다.


▲<그림 3> 평면 FET과 Fin-FET


그림에서 보면, 소스 위에 찍힌 노란색 점들은 각각 그 트랜지스터에서 흐를 수 있는 면적을 의미하고 이는 흐를 수 있는 전류의 양과 비례한다. 구조적으로 왼쪽 평면 FET는 2차원적으로 평면에서 한 면으로만 전류가 흐르지만, 오른쪽 Fin-FET은 앞면, 뒷면, 그리고 적게나마 윗면까지 3차원적으로 입체적인 3개 면을 통해 훨씬 많은 양의 전류를 보낼 수 있다. 즉, 평면 FET는 종이의 한 면만 사용하는 반면, Fin-FET은 종이의 앞뒤면을 모두 쓰고 실제 종이에서는 가능하지 않지만 종이의 옆면까지도 사용하는 셈이다.


하지만 그림에서 보는 것처럼 Fin-FET이 실리콘 위에서 차지하는 면적은 오히려 적다. 결국, 또다시 Fin-FET 기술을 통해 그동안 반도체 집적도 개발을 주도해 왔던 전형적인 방법인, 트랜지스터 면적을 줄여 집적도를 높이는 것과 같은 효과를 가져올 수있다. 게다가 Fin-FET은 게이트가 누설전류 없이 좀더 효과적으로 전류의 흐름을 조절할 수 있어서 더욱 더 게이트 렝스를 감소시킬 수 있는 여지를 제공한다.



▲<그림 4> Fin-FET의 효과

 출처: 한국경제신문 2006년 4월 8일자 기사


그렇다면 이와 같은 Fin-FET이 어떻게 소스와 드레인간 전류 흐름을 누설전류 없이 더욱 효과적으로 조절할 수 있을까? 다음 <그림4>를 보자. 한국경제신문 2006년 4월 8일자 기사에 인용된 그림으로 아직 Fin-FET의 효과를 이처럼 잘 설명한 그림을 보지 못했다. 기존의 평면 FET이 물이 흐르는 호스를 단순하게 위에서 눌러 물의 흐름을 평면적으로 제어했다면, Fin-FET는 움켜쥐는 방식으로 물의 흐름을 입체적으로 조절한다고 볼 수 있다. 그래서 기존 방법보다 더욱 효과적으로 누설전류 없이 전류의 흐름을 매우 효과적으로 조절할 수 있다.


<그림5>는 Fin-FET을 미국 버클리 대학교에서 실제로 구현한 것을 보여주는 사진이다. 이와 같은 Fin-FET 기술은 이미 실용화 단계에 있으나, 아직 생산 비용이 비싼 이유로 인텔과 같은 몇몇 반도체 선두 기업에 의해 고가의 반도체에만 실제 적용되어 일부만 상업 생산하고 있다.


▲<그림 5> 실제 Fin-FET

 출처: eecs.berkeley.edu


지금까지 반도체 개발에 있어서 고전적으로 트랜지스터의 게이트 렝스를 줄여 집적도를 높이는 방법으로는 한계에 이르고 있다. 이를 극복하고자 어떤 새로운 기술들이 현재 적용되고 있는지에 대해 알아보고자 대표적인 기술 두 가지를 살펴보았다. 하지만 이와 같은 새로운 기술들이 끊임없이 개발되고 있음에도 불구하고 실리콘을 이용한 반도체 기술에는 조만간 그 한계에 다다를 것으로예측하는 과학자들이 점점 늘어나는 추세다.


그래서 다음호에는 이와 같은 실리콘 웨이퍼의 한계를 극복하기 위해 어떤 기술들이 연구되고 있는지 살펴보는 기회를 얻고자 한다.


글쓴이 / 기술연구소 개발2팀 김윤주 부장 






Comments : 댓글을 달아주세요

댓글을 달아 주세요



지난 호에서는 ‘반도체의 역사’라는 주제로 반도체의 기술적 정의와 발전 과정을 살펴보았다. 이번에는 ‘반도체의 현재’라는 주제로 시작해 보려고 한다. 그래서, 지금 반도체 제조회사들이 반도체의 집적도를 더욱 높이고 한계를 극복하기 위해 사용하거나 연구하는 그 기술들에 대해 살펴보고자 한다. 

 

우리가 살 수 있는 면적은 제한적이다. 처음에는 전원주택과 같은 여유로운 주거 환경에서 점점 인구가 증가함에 따라 주택가 같은 밀집 지역이 생겨나고, 이어 5층 안팎의 연립주택으로, 또다시 10여 층 이상의 아파트단지로, 이제는 그 아파트들이 20층을 넘어 50층 이상의 초고층 아파트로 등장하기에 이르렀다. 하지만 기술의 한계로 무한정 높게 쌓을 수는 없고, 언젠가는 그 높이도 한계에 다다르게 될 것이다. 아마도 그때는 바다나 우주와 같은 또 다른 공간을 찾는 시도를 할지도 모르겠다. 

반도체도 이와 비슷하다. 제한된 면적에 트랜지스터의 크기를 작게 만들어 집적도를 높이는 방법은 그동안 매우 효과적인 방법이었다. 하지만 현재에 이르러서는 그 한계를 맞고 있는 듯하다.


무어의 법칙과 황의 법칙


1940년대에 반도체가 처음 발명되고, 1960년대에 집적 반도체가 처음으로 상용화된 이후, 반도체는 실로 눈부시고 숨가쁘게 발전되어 왔다. 인텔사의 공동 설립자이자 반도체 과학자였던 고든 무어(Gordon E. Moore)는 1년 6개월마다 반도체의 성능이 두 배로 개선이 된다는 ‘무어의 법칙(Moore's Law)’을 발표했고, 정말 30년 동안은 법칙으로 지켜지는 듯했다.
 
하지만 2000년대에 들어서자 삼성은 무어의 법칙을 깨고 자신들은 1년마다 두 배로 개선하겠다는 이론을 펼쳤고, 삼성전자 황창규 사장의 성을 따 ‘황의 법칙’이라고 이름 지었다.그리고 이것을 실제로 실현함으로써 결국 삼성은 세계 반도체 시장 메모리 분야에서 세계 1위의 독보적 위치를 차지하게 된다

어쩌면 1년 6개월 혹은 1년이라는 이런 법칙 때문에 반도체가 필연적으로 스스로 발전했다기보다는 목표를 세우고 이를 위해 부단하게 노력해온 우리 반도체업계 종사자들이 흘린 땀 때문에 발전할 수 있었다고 보는 것이 옳을 것이다. 

여하튼 오늘날까지 반도체의 발전은 트랜지스터 크기를 줄여 제한된 면적에 더욱 많은 트랜지스터를 집어넣어 집적도를 높이는 방법으로 발전되어 왔다. 이와 같은 개발 방법은 지금까지 매우 효과적이었고, 그래서 무어의 법칙이든 황의 법칙이든 가능했었다. 1960년대 여유로운 시골 마을에서, 1970년대 밀집한 주택가, 1980년대 5층짜리 연립주택들, 그리고 2000년대 엘리베이터가 설치된 아파트 단지들까지, 이들 건물은 무어의 법칙처럼 1년 6개월만에 전국에 수백 수천 개씩 대량으로 빠르게 지어졌다. 지금은 40층 이상의 초고층 아파트들이 지어지고, 심지어는 100층이 넘는 건물도 지어지는 중이다. 
 
문제는 이와 같은 초고층 아파트는 20층 남짓한 아파트를 지을 때 사용하던 시멘트와 같은 재료와 기존 건설 공법으로는 만들 수 없다는 점이다. 그래서 새로운 건축 재료와 공법이 필요하게 되었다. 이처럼 반도체 개발에서도 지금까지 해온 것처럼 단순하게 크기만을 줄여 집적도를 높이는 고전적인 방법으로는 한계에 봉착한다. 그래서 한계에 다다른 무어와 황의 법칙을 이어가기 위해서는 새로운 재료와 기술이 필요하게 된 것이다.




유전율과 FIN-FET


다소 어려울 수도 있겠지만, 반도체의 집적도를 이해하기 위해서는 트랜지스터 구조를 이해해야 한다. 반도체, 즉 트랜지스터에는 아래와 같이 회색으로 칠해진 실리콘에 전자 흐름의 입구라 할 수 있는 ‘소스(Source)’와 전자 흐름의 출구라 할 수 있는 ‘드레인(Drain)’이 있다. 습기가 있는 곳에 철을 두면 그 표면에 녹슬어 산화철이 만들어지는 것처럼, 실리콘을 고온으로 가열하면 표면에 녹슬어 산화실리콘이라는 물질로 바뀐다. 이 산화실리콘은 반도체의 특성을 잃어버리고, 전혀 전기가 흐르지 못하는 절연체가 된다.


▲<그림1> 반도체 실리콘 구조


지난 호에서 반도체에 자극을 주어 도체 혹은 부도체가 되도록 조절할 수 있다고 설명한 바와 같이, 이 산화실리콘 위에 자극을 주기 위한 스위치 역할을 해주는 게이트(Gate)를 연결하게 된다. 

 
앞서 설명한 반도체의 집적도를 높이는 방법으로 트랜지스터를 작게 만든다고 했는데, 그것이 바로 위의 그림에서 빨간색 화살표로 표시된 ‘전류 통과 길이’인 ‘게이트렝스(Gate length)’를 작게 하는 것이다. 그래서 이 거리를 숫자로 표시한 것이 32나노 혹은 20나노 반도체 디바이스라고 한다. 1나노(nm, Nano meter)는 1mm의 백만분의 1이다. 1mm도 작은데 그것의 백만분의 1이라니. 언뜻 느낌이 오지 않는다. 예를 들어 보자. 우리 키가 1m라고 해보자. 만약 이 키를 백만배 키우면 얼마나 될까? 1,000km가 될 것이다. 키가 1,000km면 우리나라 해남 땅끝마을에서 시작해 북한 백두산을 지나 한반도 북쪽 끝 두만강에 이르는 거리다. 
 
자, 다시 반도체로 돌아오자. 반도체의 가장 중요한 기능 중의 하나가 스위치 기능이다. 그럼 어떤 스위치가 좋은 스위치일까? 첫 번째, 스위치를 켜고 끌 때 그 전류의 흐름을 빠르게 연결하고 빠르게 끊어야 할 것이다. 두 번째, 스위치를 켰을 때 전류가 끊김없이 잘 흘러야 하며, 껐을 때는 전류가 전혀 흐르지 않아야 한다. 세 번째, 그 스위치를 켜고 끌 때 적은 힘으로도 부드럽게 켜고 끌 수 있다면 더욱 좋을 것이다.


그럼 반도체 트랜지스터 스위치에 있어서 위와 같은 성능을 높이는 방법에는 무엇이 있을까? 트랜지스터의 성능을 높이는 가장 일반적인 방법은 두 가지가 있다. 첫 번째는 전자입구인 소스에서 전자출구인 드레인까지, 전류통과 길이인 게이트렝스를 줄이는 방법이다. 두 번째는 위의 그림에서 검은색으로 칠해진 절연체(gate oxide)의 두께를 줄이는 것이다.


이 두 가지 방법을 통해 트랜지스터 스위치를 조절하면서 게이트에 아주 작은 전류 자극을 걸어도 소스와 드레인 간의 적은 전류 흐름까지도 매우 빠르게 조절할 수 있게 된다. 만약에 이 반도체가 휴대전화에 사용된다면, 적은 전류로 트랜지스터들이 작동하기 때문에 결과적으로 배터리 소모를 줄여 한번의 충전으로 더욱 오랫동안 사용할 수 있게 한다. 그리고 게이트 렝스를 줄이면 트랜지스터 스위치의 성능을 높이는 것은 물론, 앞서 말한 반도체의 집적도를 높이는 방법이기도 해서 일거양득이 된다. 그래서 반도체 업계들이 끊임없이 게이트 렝스를 줄이고자 노력해 왔다.


그런데 이렇게 1960년대 반도체가 상용화한 후 40년이 지난 현재까지도 끊임없이 줄이다 보니 이젠 너무 작아진 게이트렝스가 다른 문제점을 유발하는 부작용이 나타나기 시작했다. 즉, 소스와 드레인 간의 서로 거리가 너무 가까워지다 보니,게이트에 전류 자극을 주지도 않았는데도 이들 사이에 조금씩 전류가 흐르는 ‘누설전류’가 나타나기 시작한 것이다. 게다가 그 반도체에는 수억 개의 트랜지스터가 집적되다 보니, 그 누설전류들 역시 무시할 수 없는 수준이 되었다. 마치 우리가 휴대전화를 사용하지 않는 대기 상태에서도 누설전류에 의해 계속 배터리를 소모하게 되는 원인이 되는 것처럼 말이다.


그래서 반도체 제조업체들은 게이트 렝스를 줄이고 게이트 절연체 두께를 얇게 만들어도 누설전류가 최소화되는 방법을 연구하기 시작했다. 이들 문제에 대항하고자 근래에 들어 등장한 대표적 기술들이 ‘High-K’와 ‘Fin-FET’다.


글쓴이 / 기술연구소 개발2팀 김윤주 부장 



Comments : 댓글을 달아주세요

댓글을 달아 주세요