앰코인스토리 독자 여러분, 안녕하세요? 2016년의 마지막을 장식할 반도체 패키지 이야기를 하려고 합니다. 패키징의 숙명이기도 한, 더 작고 더 얇게, 하지만 더 싸게 만들기 위해 연말에도 엔지니어들의 노력은 계속되고 있습니다. 한두 개만 만든다면, 혹은 시간의 여유까지 있다면 작고 얇게 만드는 것도 어렵지 않은 일입니다. 하지만 더 싸게 만들려면 대량 생산이 필요하고 만드는 시간도 아주 짧아야 합니다. 이 모든 요구 조건을 만족하게 하려면 패키징의 공정마다 더 섬세하고 민감한 관리를 필요로 하는 등, 이전보다 더 높은 수준의 기술이 필요하겠지요. 자, 오늘은 그중에서도 몰딩(Molding) 공정에 관해 이야기를 해보려고 합니다.


패키지를 보호하는 EMC


패키지 공정 중에는 몰딩이 있습니다. 몰딩은 금이나 구리로 된 와이어 등이 충격에 손상되지 않도록 보호하는 역할을 하는데요, 갑자기 몰딩 공정을 꺼낸 이유는 앞에서 말한 더 작고 얇게, 그리고 더 싸게 만드는데 많은 고민이 필요한 공정이기 때문입니다. 몰딩에 사용하는 소재는 EMC (Epoxy Mold Compound)입니다. 전체 무게의 80% 내외는 필러, 즉 돌가루로 채워져 있고 나머지는 에폭시와 여러 화학약품이 포함되어 있습니다.


▲ 몰딩 공정 순서도 / EMC (Epoxy Mold Compound)

사진출처 : (좌) https://goo.gl/aSMB4z/(우)https://goo.gl/ofJCVM


몰딩 공정의 관건은 짧은 시간 안에 몰딩 금형 내부를 완전히 채우는 것입니다. EMC의 구성 성분량에 따라 EMC의 흐름성에 영향을 미칠 수 있습니다. 흐름성이 달라진다면, EMC가 다 채워지지 않고 부분적으로 채워지지 않는 미충진 (Incomplete mold) 불량이 발생할 수 있습니다. EMC의 흐름에 영향을 미치는 요소는 또 있습니다. 패키지가 점점 얇아지면서 EMC가 흘러갈 수 있는 공간도 점점 좁아지고, 간혹 공정이 다 끝났음에도 반도체 칩 일부가 노출되는 경우도 있습니다. 플립칩(Flipchip)은 언더필(underfill)이 필요한데 언더필 대신에 EMC로 한 번에 몰딩하는 경우도 있습니다. 그러면 플립칩 아래에 촘촘하게 배열된 범프들 사이로 EMC가 채워져야 합니다. 더 싸게 만들려면 한 번에 여러 개를 몰딩해야 하겠지요. 그러려면 패키지가 배열되는 기판의 크기도 점점 더 커져야 할 텐데, 몰딩 공정의 입장에서는 여러모로 어려운 일이 됩니다. 자, 이 모든 어려움을 극복하고 열심히 일을 하는 엔지니어들에게 박수 한 번 보내주셔야 할 것 같습니다.


컴퓨터를 활용한 EMC 흐름 예측


문제가 발생하면 실험 계획법을 작성해서 가능한 여러 수단을 적용해 문제를 해결할 수 있습니다. 하지만 시간이 곧 돈이고 촉박한 개발 기간 내에 빨리 해결하기 위해서는 컴퓨터를 통해 불량 발생 예측을 해 볼 수 있습니다. Mold Flow analysis라고 하여 최근에 SIP(System In Package)와 같은 복잡한 구조의 패키지에 EMC 몰딩 과정을 모사하고 불량을 예측하는 경우가 많아졌습니다. EMC의 물성을 구한 다음 실제 EMC가 채워질 회로기판 전체를 모델링하여 컴퓨터로 해석을 하게 됩니다. 말은 쉬운데 이것도 좀 손이 많이 가는 작업입니다. 우선 물성을 구하기가 참 어렵습니다. 탄성 계수나 열팽창계수와 같이 간단한 물성이 아니라 EMC의 점성(Viscosity)과 경화(Curing kinetics)와 관련된 물성이 필요합니다. 온도, 압력, 시간, 속도 등에 따라 달라지며 복잡한 수식을 통해서 최종 필요한 물성을 계산해 냅니다.


▲ 온도에 따른 점성 거동 / 온도에 따른 경화도 거동

이미지출처 : Moldex3D material Library


요즘은 회로기판 크기가 점점 커지다 보니 Mold flow 해석을 하는데 아주 좋은 성능의 컴퓨터를 사용하더라도 수십 시간이 소요되기도 합니다. 자 그렇다면 이런 수많은 어려움을 차치하고 Mold flow 분석을 했는데 어떤 결과를 기대할 수 있을까요?


우선, 첫 번째로는 미충진에 대해서 예측할 수 있습니다. 실제로 미충진 불량이 발생한 제품이 있었습니다. 여러 해결 방법을 모색하기 전에 먼저 Mold flow 해석을 통해 실제와 같이 불량이 발생하는지 확인해보았습니다. 결과로 위치와 크기가 거의 유사한 결과를 얻었습니다.


▲ 불량 발생 위치와 Simulation 결과 일치

이미지출처 : 앰코코리아 사내 자료


▲ EMC 흐름

이미지출처 : 앰코코리아 사내 자료


두 번째로 앞서 검증을 완료하였다면, 이후에는 EMC 소재를 바꾼다거나 패키지 설계 변경, 몰딩 공정 조건 변경 등을 통해 불량을 해결할 방법을 평가해볼 수 있습니다. Mold flow 해석을 통해 얻을 수 있는 가장 중요한 장점입니다. 굳이 실험을 해보지 않더라도 시간과 노력을 줄여서 문제를 해결할 수 있기 때문입니다. 요즘에는 문제가 생기기도 전에 제품 개발 단계에서 미리 해석해봅니다. 만약 조금이라도 불량의 위험이 있다면 곧바로 대응할 수 있는 대안을 미리 세우려는 이유이지요.


크리스마스와 연말에는 사랑하는 가족과 감사를 전하고픈 분들께 크고 작은 선물을 준비합니다. 이번에는 남편에게 큰마음 먹고 최신형 스마트폰을 선물해보려고 합니다. 매끈한 외형과 HD 영상을 볼 수 있는 넓은 화면, 가격은 비싸지만 선물을 받고 즐거워할 가족을 생각하며 큰 결심을 했습니다. 그런데 누구 눈에는 무엇만 보인다는 말이 있지요. 최신형의 얇고 가벼운 스마트폰을 보면, 거기에 녹아 있는 많은 엔지니어의 수고가 느껴집니다. 저렇게 작고 얇게 만들려고 얼마나 고생을 했을까요. 더 얇고 작게 만들어야 하지만 언제나 그렇듯 가격은 더 싸져야 한다는 압박까지 고스란히 견디면서, 올 한해를 수고한 우리 앰코가족들의 수고도 기억했습니다. 한 해 동안 모두 수고 많으셨습니다. (^_^)




WRITTEN BY 손은숙

건강하고 다재다능한 명품 패키지 개발을 주업으로, 울트라 캡 잔소리꾼이지만 때로는 허당 엄마를 부업으로, 하루하루를 열심히 사는 40대 꽃중년 아줌마입니다.




저작자 표시 비영리 변경 금지
신고

Comments : 댓글을 달아주세요

댓글을 달아 주세요


패키지에서 온도를 낮추는 방법


(지난 호에서 이어집니다) 첫 번째는 열 방출이 좋은 패키지를 선택해야 합니다. 패키지 구조에 따라 열 저항이 큰 차이를 보입니다. 보드로 열 방출이 잘 되려면 MLF처럼 패키지 바닥 면에 금속판이 노출되거나 칩 위에 금속 방열판을 붙이는 FCBGA도 고려할 수 있습니다. 하지만 패키지를 선정할 때는 크기와 필요한 입출력 핀의 개수, 가격 등도 같이 고려해야 하므로 종합적으로 판단해서 패키지를 선정할 필요가 있습니다.


▲ 패키지 구조에 따른 열 저항 개선


두 번째는 열전도도가 높은 재료를 사용해야 합니다. 칩을 둘러싸고 있고 패키지 재료들의 열 전도도가 높아지면 그만큼 열 방출에 도움이 됩니다. 칩을 보호하는 EMC, 칩을 기판에 붙일 때 사용하는 에폭시(Epoxy), 언더필(Underfill), 기판의 코어 등등 높은 열전도도를 갖도록 개발하고 있습니다. 그렇다고 열전도도가 두 배, 세 배가 되었다고 그만큼 열 저항이 향상되지는 않습니다.


▲ 높은 열전도도 재료를 통한 열 저항 개선


PBGA라는 패키지가 있습니다. 열 저항 개선을 위해 높은 열전도도를 갖는 구리 소재의 방열판을 포함한 것이 TEPBGA2(Thermal Enhanced PBGA)입니다. 보통 EMC의 열전도도가 1W/mK 미만인데, 그에 반해 구리는 387W/mK 정도 됩니다. 패키지 크기에 따라 차이가 있지만, 보통 10~20% 정도의 열 저항 감소를 기대할 수 있습니다. 3W/mK 이상 높은 열 전도도의 EMC도 개발되어 사용하고 있습니다. TEPBGA2에 높은 열 전도도의 EMC를 사용한다면 열 저항을 훨씬 더 낮출 수 있습니다. 하지만 앞에서도 말했듯이, 소재가 비싸고 공정도 까다로워지므로 종합적으로 판단해서 패키지 종류와 재료를 선정해야 합니다.


CFD 프로그램을 활용한 패키지 열 성능 예측과 평가


고객들은 자신들이 개발하고 있는 제품이 문제없이 잘 만들어질 수 있고 동작할 수 있을까를 고민합니다. 발열 문제도 그중 하나고, 최근에는 더 부각되고 있습니다. 만약, 문제가 될 것 같다고 해서 모든 종류의 패키지를 다 만들어보고 열전도도가 좋은 재료들을 하나씩 적용하면서 실제로 테스트를 한다면 필요한 시간과 돈은 엄청납니다. 그래서 CFD (Computational fluid dynamics) 프로그램을 사용하여 패키지를 모사하고 같은 환경을 설정해서 실제로 패키지에 발생하는 열을 예측할 수 있습니다. 그렇다면 실제 테스트보다 훨씬 짧은 시간 내에, 저렴한 비용으로 패키지의 열 성능을 예측할 수 있습니다. 요즘은 프로그램도 많이 좋아지고 컴퓨터도 좋아져서 이른 시일 내에 고객의 요청에 대응합니다. 패키지뿐만 아니라 패키지가 사용된 복잡한 시스템에서도 예측할 수 있습니다.


▲ CFD프로그램을 사용하여 네트워크 장비의 열 성능 예측 시뮬레이션


지금까지 패키지의 발열 문제와 어떻게 하면 열을 낮출 수 있는지에 대해 알아봤습니다. 발열 문제를 해결하기 위해 패키지를 설계하는 팀, 재료를 개발하는 팀, 패키지의 열 성능을 평가하는 팀이 한데 어우러져, 고객에게 최적의 패키지를 제안하고 발열 문제를 해결해 갑니다.


따뜻함은 어느 누군가에게는 추위를 이길 수 있는 소중함이지만, 우리가 날마다 마주하고 있는 패키지에는 피하고 싶은 불청객입니다. 오늘도 어떻게 하면 패키지 온도를 조금 더 낮출 수 있을까 고민입니다만, 추워지는 날씨에 마음만은 따뜻함을 고이 간직하고 싶습니다. (^_^)




WRITTEN BY 손은숙

건강하고 다재다능한 명품 패키지 개발을 주업으로, 울트라 캡 잔소리꾼이지만 때로는 허당 엄마를 부업으로, 하루하루를 열심히 사는 40대 꽃중년 아줌마입니다.




저작자 표시 비영리 변경 금지
신고

Comments : 댓글을 달아주세요

댓글을 달아 주세요

  1. eng;r 2016.12.01 09:53 신고 Address Modify/Delete Reply

    항상 좋은 글 감사합니다.
    공정 eng;r로써 많이 배우고 갑니다.

  2. 양영호 2016.12.23 11:40 신고 Address Modify/Delete Reply

    많은 반도체관련 자료들이 있지만 여기가 제일 깔끔하고 잘 정리되어 있습니다.
    작성하느라고 많을 노력을 하셨을 것입니다.
    가끔씩 들러 자료도 보고 널리 알리겠습니다.^^


안녕하세요? 무더운 여름이 지나고 아침저녁으로는 선선하다 못해 두꺼운 옷을 빨리 꺼내야 할 것 같은 가을이 성큼 다가왔습니다. 가을의 풍성함과 아름다움을 충분히 느끼고 싶지만 단풍은 금방 떨어질 것 같고, 얼마 지나지 않아 추운 겨울이 곧 다가올 것만 같습니다. 추위를 이겨내려고 보온 성능이 뛰어난 옷을 준비하고 찬바람이 들어오지 않도록 집 안 구석구석을 살피는 일도 곧 해야 할 것 같습니다. 추워지면 따뜻한 온기는 더할 나위 없이 반갑지만 우리가 늘 고민하는 패키지에서는 달갑지 않은 손님입니다.


시간이 지날수록 패키징 기술의 수준도 그 끝이 어디까지일까 할 만큼 많이 발전하고 있습니다. 더 작아지고 얇아졌지만 더 많은 기능을 더 빨리 구현해 내고 있습니다. 하지만 끝없이 달려가던 기술력도 패키지의 열 문제를 무시하지 못하게 되었습니다. 발열 문제는 단순히 뜨거워지는 문제를 넘어 전자제품의 성능을 좌우하고 안전까지도 영향을 미치게 되었습니다. 어떤 고객사는 야심 차게 출시한 AP (Application Processor)의 발열 문제로 최대 고객에게 제품 납품에 실패했고, 이후 급격한 실적 악화와 구조조정의 아픔을 겪어야만 했습니다. 이렇듯 발열 문제는 칩 설계에서부터 최종 제품 설계에 있어서 중요한 요인이 되었습니다. 칩을 만드는 고객뿐만 아니라 패키징을 하는 앰코에서도 어떻게 하면 발열 문제를 해결하는 데 도움이 될지를 같이 고민하고 있습니다. 그렇다면 패키지에서는 왜 열이 발생하고 어떻게 하면 발열 문제 해결에 도움이 될지, 한 번 알아보도록 하겠습니다.


▲ 스마트폰의 발열

사진출처 : https://goo.gl/iJis0j


패키지에 열이 발생하는 이유


반도체 패키지 내부에 있는 칩을 동작시키려면 솔더볼 혹은 리드를 통해 칩에 전류를 흘려줍니다. 중고등학교 다닐 때 물리 시간을 기억하시나요? 에너지(Watt)는 전압(Voltage, V)과 전류(Current, I)의 곱으로 표현됩니다. P=V×I, 전류를 흘려주면 패키지에는 에너지가 전달되는 셈입니다. 그리고 이 에너지는 또 다른 형태로 변환이 될 텐데요, 우리가 승용차에 휘발유를 주유하면 차가 움직일 수 있고 밤에는 어둠을 밝히려고 전조등을 켭니다. 가끔은 졸음을 깨우려 시끄러운 음악을 틀기도 하고 춥거나 더우면 히터와 에어컨을 켤 수도 있습니다. 휘발유가 여러 형태의 에너지로 변환되었습니다. 그렇다면 반도체 패키지는 어떤 종류의 에너지로 변환이 되었을까요? 설마 패키지 안에서 칩이 움직이거나 소리를 지르지는 않겠지요?


칩으로 흘러들어 간 전류는 트랜지스터를 작동시키지만 대부분 열에너지로 변환이 됩니다. 문헌을 보면 95% 이상, 대부분 열로 변환된다고 합니다. 그렇다면 뜨거워지지 않게 스마트폰을 쓰면 되겠지만 100만 원 가까이하는 스마트폰인데 전화나 문자만 보내고 있을 수는 없겠지요. 요즘 스마트폰은 과거에 데스크톱에서나 가능했던 기능들, 예컨대 3D 게임이나 요즘은 가상현실(virtual reality)까지도 구현이 되는데요, 그러려면 필요한 에너지도 많아지겠고 칩 온도도 같이 올라갈 수밖에 없습니다. 그래서 칩을 설계하는 고객들은 저전력으로도 작동할 수 있도록 설계하겠지만, 패키징에서도 온도를 낮출 방법들을 같이 고민하고 있습니다.

   

▲ 고성능 스마트폰 기기들

사진출처 : (좌)https://goo.gl/Ai0pxh/(우)https://goo.gl/mSnBPu


패키지에서 열은 어떻게 전달될까요?


칩을 작동시키면 패키지에서 열이 발생하고 그 열은 패키지가 실장된 보드와 공기 중으로 열이 전달됩니다. 패키지의 구조와 어떤 재료를 사용하느냐에 따라서 얼마나 열이 잘 전달될 수 있는지 결정됩니다. 열 전달이 가장 잘 되는 것은 보드를 통한 전도입니다. 강제로 바람을 불어주거나 외부의 냉각 장치를 부착하지 않는다면 보통 90% 이상의 열이 보드를 통해 방출됩니다.


▲ 패키지의 열 전달 구조


전기 저항처럼 패키지의 열 성능을 평가하는 열 저항이 있습니다. 패키지가 실장되는 곳은 천차만별입니다. 워크스테이션, 벽걸이TV와 같이 큰 제품에서부터 우리가 쓰고 있는 작고 얇은 스마트폰까지, 패키지 주변 환경에 따라 열 저항은 얼마든지 달라질 수 있습니다. 그래서 JEDEC(국제 반도체 공학 표준 협의기구)이라고 하는 곳에서 보드(Board)의 크기와 구성, 열 저항을 측정하는 챔버 등에 대해서 표준화를 했고, 그 규정에 따라 열 저항을 측정하게 됩니다. 가장 기본적인 것으로 Theta JA가 있습니다. 칩을 작동시켰을 때에 칩 온도와 패키지를 둘러싸고 있는 대기의 온도 차이를 칩에 인가한 Power로 나눈 값입니다. Theta JA를 사용하면 칩 온도를 예측하거나 혹은 사용할 수 있는 최대 Power도 예측할 수 있습니다.



또 다른 열 저항으로는 Theta JC가 있습니다. 예를 들어, 컴퓨터 본체를 열면 그 안에 무지막지하게 큰 히트 싱크(Heat sink)와 팬(Fan)이 보입니다. 컴퓨터는 잘 몰라도 CPU는 한 번씩 들어보셨을 텐데요, CPU 속도가 빨라야 컴퓨터가 버벅거리지 않는다는 것도 아시겠지요. 



▲ 패키지 열저항 온도 측정 위치 & CPU 히트싱크와 팬


CPU의 성능이 좋아지면서 그만큼 더 많은 전력을 소비하고 열이 발생합니다. 열을 강제로 식히려고 히트 싱크를 부착하고 팬으로 바람을 불어줍니다. 이럴 때는 패키지와 보드 사이보다는 패키지와 히트 싱크 사이에 저항을 줄이는 것이 더 효과적인데요, 칩과 히트 싱크가 부착되는 패키지 표면의 저항, Theta JC가 중요합니다. 낮을수록 히트싱크와 팬의 효율이 높아져서 결국 패키지의 온도를 가장 효과적으로 낮출 수 있습니다. (다음 호에 계속됩니다)




WRITTEN BY 손은숙

건강하고 다재다능한 명품 패키지 개발을 주업으로, 울트라 캡 잔소리꾼이지만 때로는 허당 엄마를 부업으로, 하루하루를 열심히 사는 40대 꽃중년 아줌마입니다.




저작자 표시 비영리 변경 금지
신고

Comments : 댓글을 달아주세요

댓글을 달아 주세요


안녕하세요? 한동안 장마로 비가 많이 오더니 30도를 훌쩍 넘는 더위가 이어지네요. 지금까지 살면서 긴급 재난 문자를 이렇게 많이 받아 본 적은 처음인 거 같습니다. 일본은 지진의 조짐이 보이면 이렇게 전 국민에게 대피하라는 문자를 보낸다고 합니다. 지진은 아니지만 우리는 폭우와 폭염으로 국민안전처에서 여러 차례 문자를 받았습니다. 위험에 처한 분들이 걱정도 되지만, 국가로부터 도움을 받고 있다는 생각이 들어 왠지 감사하더군요. 이런 긴급 상황에서 매체가 되어 주는 스마트폰의 위력에도 놀라웠고요. 여러분들은 어떠셨나요? 모쪼록 본격적인 무더위가 시작될 텐데, 스트레스 적게 받으시고 건강 잘 유지하시기 바랍니다.


사람의 건강을 해치는 것은 무엇일까요? 방금 말씀드린 스트레스가 아닐까요? 이 스트레스를 얼마나 덜 받고 잘 해소하느냐에 따라 건강 유지의 관건이 달려 있다고 해도 과언이 아닐 겁니다. 이 스트레스를 완벽히 제로로 만들 수 있을까요? 관에 들어가면 제로가 된다고 합니다. (ㅎㅎ) 즉, 스트레스는 내가 아직 살아 있다는 증거라고 하네요. 사는 동안 피할 수 없는 이 스트레스! 친해지기도 그렇고 마냥 멀리할 수도 없는 존재인데요, 그런데 사람뿐만 아니라 반도체 패키지도 스트레스를 받는다는 것을 아시나요? 이번에는 반도체 패키지는 무엇 때문에 스트레스받는지에 대해 한번 살펴보려고 합니다.


지난 호에서, 패키지 만병의 근원은 패키지 변형, 즉 ‘warpage’라고 말씀을 드렸습니다. 바로 이러한 변형이 생기면 패키지 내부에서는 스트레스가 발생하게 됩니다. 패키지 내부에서 스트레스가 높아지면 패키지 내부 계면 박리나 crack과 같은 기계적 손상이 발생해 설계된 전기적인 성능을 내지 못하는 불량이 발생하게 됩니다.


패키지 Warpage 변형이 발생하는 이유


✓ 반도체 패키지에 사용되는 재료


패키지 내부를 자세히 들여다보면 반도체 패키지를 구성하는 몇 가지 전형적인 재료가 있습니다. Silicon (Si)으로 이루어진 Chip, 그리고 이 chip을 고정해 전기적인 배선을 가능하게 하는 Copper (Cu)소재의 Lead frame, 혹은 Polymer 소재의 기판 substrate, 이 Silicon chip을 Lead frame이나 Substrate에 접착시키는 열경화성수지 접착제인 Adhesive 혹은 Underfill (UF), 그리고 이 모든 것을 감싸 덮어 주는 EMC (Epoxy Molding Compound)가 있습니다. 또한 Silicon chip과 Lead frame/Substrate와 전기적인 통로가 되는 Gold (Au) wire / Tin (Sn) bump 등이 있습니다.


▲ 반도체 내부 - 패키지 타입별 소재 구성도


반도체 조립 공정이라는 것은 위에서 설명한 소재들을 대략 낮게는 10℃부터 높게는 260~300℃까지 온도를 가하며 Silicon Chip을 중심으로 각 소재를 서로 접합시키는 일련의 과정입니다. 그런데 이 소재들에 온도를 가하면 팽창합니다. 재료별로 그 팽창하는 정도가 고유하게 다릅니다. 이렇게 열팽창 정도가 Silicon chip을 기준으로 보면 재료별로 적게는 7배, 많게는 100배 정도 차이가 납니다. Adhesive나 EMC 등으로 감싸고 접합한 상태에서 온도를 올리거나 내리게 되면 어떤 재료는 덜 팽창 혹은 수축하려고 하고, 어떤 재료는 많이 팽창 혹은 수축하려다 보니 변형이 생기게 됩니다.


▲ 반도체 패키지 조립 공정별 typical 공정 온도


▲ 소재별 선형 열팽창 계수


✓ 보드 레벨에서의 warpage가 BGA 솔더 접합부에 미치는 영향


패키지의 변형 문제는 패키지를 만들고 나서도 고민이 됩니다. 패키지를 보드에 부착한 후에도 반복적인 온도 변화 환경에 놓일 수 있기 때문입니다. 이때는 패키지와 보드 사이의 열팽창 차이로 솔더 접합부의 수명에 영향을 미칩니다. 솔더 접합부에 반복적인 변형이 발생하면 피로가 가중되어 결국 Crack이 발생할 수 있습니다. 솔더 접합부의 피로 수명을 높이기 위해 다양한 노력을 하고 있습니다만 가장 중요한 것은 보드와 패키지 사이에 열팽창 차이를 줄이는 것입니다.


▲ Solder joint crack during Temperature cycling


✓  반도체 소재의 기계적 물성치 정의 


1) 열팽창 계수 (CTE, Coefficient Of Expansion) : 철사나 구리줄을 가열하면 늘어납니다. 이때 온도 변화가 클수록 길이의 변화도 커지게 되지요. 길이의 변화는 처음의 길이에도 비례합니다. 길이가 L0인 고체 온도가 △t만큼 변하였을 때 길이의 변화를 △L이라고 하면, △L은 △t와 L0에 비례하므로 다음과 같이 나타낼 수 있습니다.


∆L=αL_0×∆t


이 식에서 비례 상수 α를 ‘선형 열팽창 계수’라고 한다. 늘어났을 때의 길이 L은 다음과 같습니다.


L=L_0 (1+α∆t)


이미지 출처 : http://goo.gl/WB516G


2) 탄성 계수 (Young’s Modulus) : 재료의 종류에 따라 응력이 일정한 값(항복점)을 초과하지 않을 때 응력과 변형률과의 비는 일정한 값을 나타내며, 이때의 비례상수를 말합니다. 변형률은 길이 혹은 체적의 비를 나타내며 무차원이므로, 탄성계수의 단위는 응력의 단위와 동일합니다. 수직응력(σ)과 변형률(ε)의 사이에는 σ=Eϵ의 관계가 있으며, E를 종탄성계수(Young’s modulus)라 하고, 보통 ‘탄성계수’라고 말합니다.


이미지출처 : http://goo.gl/axuuCI


✓ 패키지 warpage 변형을 최소화하는 방법 (공정 관점/재료 관점/구조 관점)


1) 공정 온도를 낮추라

2) CTE mismatch를 최소화하라 - Low CTE 재료 선정

3) Low modulus 소재를 선정하라

4) 재료의 CTE mismatch 유효 면적 / 길이를 줄여라


이번 달에는 패키지 만병의 근원인 패키지 warpage에 대해 알아보았습니다. 이러한 변형을 최소화 함으로서 스트레스를 낮추는 방법들을 살펴보았는데요, 독자 여러분도 무더운 여름 스트레스받지 않도록 하시고 혹 그렇더라도 본인에게 맞는 해소법으로 건강을 유지하시기 바랍니다.


그동안 6회에 걸쳐 연재하고 있는데 과연 몇 분이나 이 글을 보실까 하는 궁금증이 생겼습니다. 제가 드라마 작가는 아니지만 왜 시청률에 연연해 하는지 조금은 이해가 되기도 하더군요. (^^) 아래 보시면 ‘빨간 하트’가 있는데요, 눌러 주시면 공감 지수가 올라간답니다. 비록 큰 도움이 안 되었더라도 눌러주시면 제가 몇 분이 이 글을 보시는지 가늠하는 데 유용하겠습니다.




WRITTEN BY 손은숙

건강하고 다재다능한 명품 패키지 개발을 주업으로, 울트라 캡 잔소리꾼이지만 때로는 허당 엄마를 부업으로, 하루하루를 열심히 사는 40대 꽃중년 아줌마입니다.




저작자 표시 비영리 변경 금지
신고

Comments : 댓글을 달아주세요

댓글을 달아 주세요

  1. Austin Park 2016.07.29 21:41 신고 Address Modify/Delete Reply

    읽기만 하고 댓글을 달지 않는 부끄럼쟁이 반도체인들..ㅎㅎ
    지난 SEMI packaging교육에서 Presentation 잘 들었습니다.
    좋은 반도체 이야기 계속 올려 주세요.

  2. 엄명철 2016.10.07 15:11 신고 Address Modify/Delete Reply

    잼나게 보고 있습니다.

  3. 권종대 2016.10.26 16:18 신고 Address Modify/Delete Reply

    글 잘 보고 있습니다.
    너무 잼있게 잘 설명 해 주셔서 제가 신입 친구들 교육용으로도 쓰고 있습니다. ^^
    -나믹스 권과장-


[건강한 반도체 이야기] 미모와 체중에 신경 쓰는 패키지


안녕하세요? 독자 여러분! 올해 앰코인스토리 [반도체 이야기]의 주제는 ‘건강하고 다재다능한 반도체 이야기’였습니다. 기억하시나요? 지금까지 다섯 차례에 걸쳐 반도체의 건강에 관해 이야기를 했습니다. 자, 이번 호부터는 건강은 기본으로 하고 다재다능한 반도체 이야기를 해볼까 합니다. 갑자기 이런 말이 생각나네요. 아빠가 딸 아이에게 “못생겨도 좋다. 공부 못 해도 좋다. 건강하게만 자라다오!” 과연 진심일까요?


저도 엄마지만 앞의 아빠처럼 훌륭한 부모는 아닌가 봅니다. 저는 솔직히 제 아이들이 건강은 당연하고 부모 유전자의 한계가 있음에도, 이왕이면 키도 크고 예쁘고 날씬하고 공부도 잘했으면 좋겠거든요. 당연히 부모의 욕심이지요. (^^) 반도체 패키지의 성능에 대한 소비자와 고객들의 욕심도 이와 같다고 생각합니다. 건강하기만 하면 안 됩니다. 작아져야 하고, 가벼워야 하고, 얇아져야 하고…. 반도체의 외모가 아주 중요해졌습니다.


스마트폰을 예로 들어 볼까요? 스마트폰 전체 두께는 얼마나 될까요? 지금 여러분 손에 들려있는 폰을 한 번 보세요. 대략 7~8mm 됩니다. 무게는 얼마나 될까요? 기기나 크기에 따라 다르겠지만 대략 150~250g 정도입니다. 이 정도 두께와 무게라면 그 안에 들어가는 반도체 패키지의 두께나 무게는 얼마나 될까요? 제가 지금 지면이 아닌 강의를 한다면 돌발 퀴즈를 내어 가장 근접하게 맞추시는 분께 시원한 아이스크림을 드리고 싶습니다만, 아쉽네요. 아! 댓글을 달아보시겠어요? 하하! 답을 말씀드릴게요.


두께는 1mm가 넘지 않습니다. Substrate 기판을 사용하는 Laminated 패키지 타입은 대략 0.5~0.7mm 정도이고 기판을 사용하지 않는 Wafer level CSP 패키지는 보통 0.3~0.4mm 정도 됩니다. (제가 여기서 말씀드리는 수치는 어디까지나 대략적인 수치입니다. 이보다 더 얇거나 두꺼울 수 있으니 참고하시기 바랍니다.) 무게는 얼마나 될까요? 15mm 정도 크기의 패키지는 2g 내외입니다. 이보다 작은 패키지는 물론 그 이하일 것입니다. 최근 삼성전자에서 20mm 512GB 메모리를 1g으로 만들었다고 하네요. 아래 그림에서 보듯, A4용지 1장이 5g 정도 하니 얼마나 가벼운지 감이 오겠지요.


▲ 삼성전자, 무게 1g 크기 2cm ‘512GB BGA NVM2SSD’

사진출처 : 삼성전자


이번에는 그럼 패키지 속으로 들어가 보겠습니다. Mobile Application Laminated 타입 패키지 안에 있는 Si chip 의 두께는 얼마나 될까요? 대략 50~100㎛ 이내입니다. 여러분! 100㎛ 정도면 어느 정도인지 혹시 감이 오시나요? A4 종이 1장의 두께가 80~100㎛ 정도라고 하니, 50㎛ 정도의 Chip 두께라면 A4 종이보다 더 얇은 거겠지요. 아래 그림에서처럼 스마트폰에 들어가는 AP (Application Processor) device이고 패키지 형태는 POP (Package On Package) 입니다. 아래 패키지가 Logic device, 위 패키지가 memory device입니다. 두 개의 패키지가 stack 되었어도 전체 두께가 1mm가 채 안 되지요. 단면을 보시면 Si chip 두께를 대략 가늠해 볼 수 있을 겁니다.


▲ 1mm 이하 두께의 POP (Package On Package) 패키지 단면 사진


패키지 만병의 근원


사실 여기까지는 반도체 패키지에 관해 관심이 있으시다면 이미 이 정도는 알고 계신 분들이 많을 겁니다. 멀리 돌아왔는데요, 사실 반도체 외모에 대해 제가 말하고 싶었던 것은 두께나 무게나 크기가 아닙니다. 스마트폰에 들어가는 AP (Application Processor) 패키지는 크기가 대략 14mm 내외입니다. 헌데 chip 성능상 크기를 줄이는 데 한계가 있습니다. 그런데 1mm 이하로 얇아지면서 생기는 문제가 아래 그림들과 같은 패키지 변형입니다. 이것은 Warpage 라고도 하는데요, 이 변형 정도, 즉 warpage 정도가 크면 클수록 문제를 일으킵니다. 어찌 보면 패키지 만병의 근원이라고도 볼 수 있습니다. 그래서 신규 패키지 개발이나 생산 때면 이 Warpage 최소화를 위해 최적화된 구조 설계, 최적화된 재료 선정, 적절한 공정 선택과 조건 설정이 주요 과제가 됩니다.


▲ 패키지 Warpage 측정 결과


패키지 Warpage가 크면 발생하는 문제


패키지 변형인 Warpage가 크면 무슨 문제가 일어날까요? 일차적으로 패키지를 Board에 실장할 때 Warpage가 과도하면 아래 두 그림에서 보여주는 것처럼 Solder 접합부가 보드에 안 붙는 non-wetting 현상으로 open 불량을 가져오기도 하고 인접한 Solder Ball끼리 녹아 붙으면서 연결되지 말아야 할 회로가 연결되어 short 불량을 일으키기도 합니다.


이차적으로는 패키지가 보드에 실장되고 사용 환경에서 고온, 저온을 겪게 되면 이러한 Warpage 변형 모양이 아래로 불룩(Smile face)하거나 위로 불룩(Cry face)한 모양으로 반복적으로 바뀌고, 이러한 반복적인 변형이 패키지 내부 접착 계면에 박리를 유발하기도 하고 패키지 내부 crack이나 보드와의 전기적인 Solder 접합부 파손으로 Device 본래의 기능을 갖지 못하게 될 수도 있습니다.


▲ 과도한 Smile face Warpage로 인한 SMT공정 중 발생할 수 있는 open / short 불량

사진출처 : Chip Scale Review Magazine (http://goo.gl/UjYbty)


▲ 과도한 Cry face Warpage로 인한 SMT 불량

사진출처 : 특허청 (http://goo.gl/KzHGfC)


패키지 warpage 레벨 요구 조건


과연 실장 때 불량을 막으려면 패키지의 Warpage는 얼마로 관리되어야 하고 고객의 요구 수준은 얼마나 될까요? 15mm 이하의 크기는 1년 전만 해도 80㎛ 이내였다가, 최근에는 50㎛, 심지어 Solder가 녹는 220℃ 이상의 온도 구간에서 20㎛ 이내를 요구하기도 합니다. 앞에서 A4 용지 두께를 생각해 보시면 얼마나 변형이 적어야 하는지 아시겠지요? 이 criteria를 맞추기 위해 얼마나 고생하는지 아마 모르실 겁니다.


참고로, 30~50mm 크기의 비교적 큰 패키지는 200~250㎛ 이내를 요구합니다. 50mm 크기면 손바닥 반 만한 크기인데, 변형을 A4 종이 2장 겹친 것보다 작게 할 수 있을까요? 이것도 정말 쉽지 않답니다. 하지만 우리 앰코는 불가능을 가능으로 만들지요. 대단하지 않나요? (^^)


앗, 그럼 패키지 만병의 근원인 Warpage는 왜 발생하는 걸까요? 그리고 그것을 최소화하기 위한 방법은 무엇일까요? 다음 호에 계속 됩니다.




WRITTEN BY 손은숙

건강하고 다재다능한 명품 패키지 개발을 주업으로, 울트라 캡 잔소리꾼이지만 때로는 허당 엄마를 부업으로, 하루하루를 열심히 사는 40대 꽃중년 아줌마입니다.





저작자 표시 비영리 변경 금지
신고

Comments : 댓글을 달아주세요

댓글을 달아 주세요

  1. 솔솔 2016.07.01 09:19 신고 Address Modify/Delete Reply

    오래기다렸습니다
    좋은 글 올려주셔서 감사합니다!!


[건강한 반도체 이야기] 반도체 패키지 건강 검진항목, 3편


안녕하세요, 계절의 여왕 5월이 벌써 지나가고 있네요. 아쉽긴 하지만 나무들이 더욱 풍성한 푸른 옷으로 차려입고 여름맞이 채비를 하는 모습을 보면 이 또한 반갑지 아니한가요? 뭐든 즐겁게 살자고요! 이번 호는 지난 호에 이어 보드레벨 신뢰성에 대한 심화 과정을 해보겠습니다. 심화 과정에 앞서, 지난 호 내용을 잠깐 복습해 보면 보드레벨 솔더 접합부의 신뢰성 테스트를 왜 하는지, 어떤 종류의 신뢰성 테스트가 있는지, 실험을 하기 위해 시료가 갖추어야 할 요구조건과 실험을 진행하기 위해 어떤 절차로 어떻게 준비하는지 등등에 대해 설명해 드렸습니다.


보드레벨 신뢰성 조건을 구체적으로 설명하려면 그 사용처에 대한 이해가 먼저 필요합니다. 즉, 어떤 용도로 어떤 제품에 사용되느냐에 따라 테스트 조건이 달리 적용되고 있으니까요. 요즘 반도체 패키지 시장은 크게 두 가지로 나눌 수 있습니다. 크기가 15mm 정도 이하, 대략 1mm 두께 이하인 mobile application과 15mm 이상의 크기에 1mm보다 두꺼운 network 서버 application입니다. 물론 이외에도 자동차 전장부품인 Automotive application이나 각종 Sensor, IOT, Wearable application도 있습니다만, 반도체 제품 크기에 따라 보드레벨 신뢰성 테스트가 이뤄진다 해도 과언이 아니니, 편의상 이렇게 두 가지로 구분 지어 설명해 드리겠습니다. 


자, 이제 시료가 준비도 되고 어떤 목적에 쓰일 반도체 패키지인지 정리가 되었으니 본격적으로 테스트를 해볼까요? 

 

보드레벨 신뢰성 테스트 종류 및 application 별 조건 


1. Thermal cycling test (IPC9701)


패키지 레벨에서의 가장 중요한 신뢰성 항목이 고온 환경의 테스트인데, 보드레벨 솔더 접합 신뢰성 테스트에서도 가장 중요한 하중 조건이 thermal cycling test입니다. 즉, 고온부와 저온부로 반복적인 열 하중을 주어 솔더 접합 부분이 언제 파손이 일어나는지 알아보는 실험인데요, 아래 표1)을 보시면 IPC 9701 spec에 다섯 가지 조건이 규정되어 있습니다. 이 중 TC3 (-40C ~125C, 1 cycle/hr)가 mobile 제품군에, TC1 (0C~100C, 1.5cycle/hr)이 network server 제품군에 적용되는 대표 조건입니다. 물론 고객별로 위 표준 조건에서 약간씩 변경시킨 조건으로 실험하기도 합니다. 예를 들면, TC3 조건에서 125C 대신에 85C를 사용하기도 하고, 1cycle/hr 대신에 2cycles/hr로 바꾸기도 합니다. 아래 그림1)은 TC4 조건의 패키지가 TC chamber에서 패키지가 겪는 온도 프로파일입니다. 이러한 온도 환경에서 솔더가 균열이 생겨 저항이 증가하여 1000옴이 넘게 되면 그때의 cycle을 fail cycle로 간주합니다. 


▲ 표1) 보드레벨 thermal cycling test 조건


▲ 그림1) TC4, 2cycles/hr 조건의 시간에 따른 온도 프로파일

 

2. Mechanical Shock test (JESD22-B111) – Mobile application 


2000년 초반부터 휴대폰이나 디지털카메라, 캠코더 등의 mobile 기기들이 본격적으로 대중화되면서 보드레벨 솔더 접합 테스트 항목에 열 하중뿐만 아니라 충격 하중에 대한 평가가 중요하게 대두가 되었고, 수요가 급증하고 매우 중요한 평가항목으로 요구되었습니다. 아래 표2)를 보시면 여덟 가지 조건이 있는데 이 중에 B 조건 (1500G, 0.5ms)이 mobile application에서 적용되는 조건이고 C, D, E (100G ~340G) 조건이 network server application에 적용되는 조건입니다. 그럼 왜 다른 조건을 사용하는 걸까요?


아래 표2)에서 Equivalent drop height를 보면, B 조건은 사람이 휴대폰을 손에 들고 있다가 허리 정도 높이인 112cm 높이에서 제품을 떨어뜨렸을 때 반도체가 받는 순간 충격이 중력가속도의 1,500배에 해당하기 때문입니다. 반면, network server 제품은 mobile 제품처럼 사람이 들고 다니면서 사용하기보다는 한 곳에 고정하여 사용하므로 1m 정도 높이에서 떨어뜨릴 일은 거의 없고 대신 SMT 공정 중이거나 SMT 완료된 PCB 보드를 핸들링하다가 장비가 대략 10~30cm 정도 높이에서 떨어뜨릴 수도 있어서, 좀 더 낮은 G값을 갖는 C, D, E 조건을 적용하는 것입니다.

아래 그림2) 같은 Sine pulse의 충격이 가해지도록 조건을 잡고 그림3)과 같은 장비에 그림4)와 같은 패키지가 SMT 된 보드를 그림5)와 같이 올려놓고 불량이 날 때까지 계속 낙하시킵니다. 보통 불량 기준은 솔더 접합부의 초기 저항이 1000옴을 넘어가면 ‘불량’이라고 간주합니다. 샘플 사이즈 60개의 패키지에 대해 최소 50~63.2% 불량이 날 때까지 실험을 지속합니다. 때에 따라 1000drop을 해도 충분한 불량이 안 생길 때는 1000drop에서 멈추고 초기 불량 정도 결과로만 성능을 평가하기도 합니다. 


▲ 표2) Mechanical shock test 조건 

 

▲ 그림2) 충격 하중 하에서의 G값의 sine pulse 

 

▲ 그림3) Mechanical shock test 장비 모식도

 

▲ 그림4) Mobile application의 Shock test용 시편 

그림5) Drop table에 패키지가 아래 방향으로 향하게 세팅된 보드 

 

3. Mechanical Shock test – Network server application


Network server application의 큰 패키지는 C, D, E 조건을 사용하지만 mobile 조건과는 달리 각 C, D, E 조건에서 그림6의 빨간색 저항값이 fail로 간주합니다.


▲ 그림6) Mechanical shock test – C, D, E 조건에서 패키지의 저항값 및 보드 변형률


4. Cyclic bend test for mobile application


Cyclic bend test는 초창기 휴대폰이 터치방식이 아니라 손가락으로 꾹꾹 눌러주는 Key-press 방식이어서 이러한 사용환경을 모사하기 위해 개발이 되었습니다. 즉, 손가락으로 Key pad를 초당 2~3회 이상을 눌러주면 보드가 굽힘 하중을 받게 되고 그러한 굽힘 하중 하에서 솔더 접합부가 변형되는데, 지속적으로 수십만 번 반복된 굽힘 하중이 가해지면 솔더 접합 부분에 crack이 생기게 됩니다. 그림7)과 같이 SMT된 보드를 4-points 굽힘 하중을 받도록 세팅하여 1~3mm 정도 변형이 생기도록 1~3Hz의 frequency로 눌러줍니다. 반복적이고 지속적인 굽힘 하중에서 1000옴이 넘어가면 불량으로 간주하고 약 이십만 사이클까지 지속합니다. 그림8)을 보면 초기 수옴의 저항이 반복적인 굽힘 하중 하에서 수천 사이클을 지나면 저항이 증가하기 시작하는 것을 볼 수 있습니다. 


▲ 그림7) Cyclic bend test의 4-point bend 모식도

 

▲ 표3) Cyclic bend test 실험 조건

 

▲ 그림8) Cyclic bend test의 초기 저항 대비 실험 진행 중 저항 증가 


5. Monotonic bend test for network server application


Monotonic bend test는 mobile application 용도의 cyclic bend test와 달리 Network server application에서 Shock test처럼 SMT 보드를 핸들링하다가 충격을 줄 수도 있지만 갑작스러운 굽힘이 발생할 수 있기에 이러한 작업 환경을 모사하기 위해 개발되었습니다. 그래서 그림9)과 같이 설치하고 cyclic bend는 수 mm의 변형을 반복적으로 준다면 이 Monotonic bend는 한 번에 solder가 crack이 생길 때까지 계속 변형을 주어 구부려 줍니다. 그럼 그림10)과 같이 솔더 crack이 발생하면서 저항이 증가하게 되고, 이때 보드 굽힘 변형률도 함께 측정합니다. 즉, 어느 정도의 보드 굽힘에서 솔더 접합부가 균열이 나는지를 평가한다고 볼 수 있습니다. 


▲ 그림9) Monotonic bend test의 4-points 모식도


▲ 그림10) Monotonic bend test의 초기 저항 대비 굽힘 하중 하에서 저항증가와 보드변형률

 

불량 판정 기준


불량 판정 기준은 보통 절대적인 값으로 실험 중 저항이 1000 옴이 넘거나 혹은 때에 따라서는 상대적으로 초기 저항의 20% 가 넘으면 불량으로 간주하기도 합니다. 보통 전자의 1000옴을 기준으로 불량 판정합니다. 


통계 분석 (Weibull plot)


보통 보드레벨 테스트는 작게는 30개, 많게는 60개의 샘플 사이즈를 가지고 실험하고, 각 패키지당 불량이 발생한 수명을 얻게 됩니다. 얻게 된 수명을 아래 그림11)과 같이 X축에 불량수명(불량 cycle or drop)을 표시하고 Y 축은 전체 시료의 누적 불량률을 표현합니다. 이러한 수명을 Weibull plot을 이용하여 그리게 되면, 초기 failure, mean failure (50%), characteristic failure (63.2%) 값들을 통계적으로 알 수 있습니다. 


▲ 그림11) 통계분석을 위한 Weibull plot


불량 모드 및 불량 분석


보드레벨 신뢰성 테스트를 하면 아래 그림12)과 같이 다섯 가지 전형적인 불량모드가 발생합니다. 일반적으로 솔더 내부의 균열이나 metal pad와 솔더 접합면에서의 생성되는 IMC (Inter-Metallic Compound) 계면에서의 균열이 발생하는데, 이러한 불량을 Dye&Pry라는 방법과 X-section이라는 두 가지 방법을 이용해 분석합니다. Dye&Pry 방법은 불량 난 패키지를 빨간색 잉크에 담그면 균열 난 계면에 잉크가 침투하게 되고 보드와 패키지를 분리하게 되면 패키지 평면상으로 어떤 솔더 접합부가 취약한지 위치와 균열 양상을 쉽게 알 수 있고, X-section 방법은 솔더의 수직 단면에서 어느 계면이 취약한지 알 수 있습니다. 


▲ 그림12) 전형적인 보드레벨 솔더 접합부의 불량 모드 

 

▲ 그림13) 불량 분석 사진 예

 

이상으로 여러 하중 조건에서 보드레벨 솔더 접합부의 신뢰성 평가하는 방법을 구체적으로 알아보았습니다. 자 이러한 정형화된 테스트 방법으로 패키지 종류나 크기나 두께, 패키지에 사용되는 재료들, 특히 솔더 합금 종류, 솔더가 접합되는 메탈 표면 재료 등등에 대해 실험하여 각 패키지의 열적 하중, 기계적 충격 하중, 굽힘 하중 상황에서의 솔더 접합부의 수명이나 성능을 평가하고 개선합니다.


어떠세요? 도움이 되셨는지 궁금하네요. 좀 생소한 분야의 신뢰성 테스트일 수 있는데요, 잘 이해가 안 되거나 궁금하신 부분은 댓글로 질문해 주시면 성심성의껏 답변 드리겠습니다.




WRITTEN BY 손은숙

건강하고 다재다능한 명품 패키지 개발을 주업으로, 울트라 캡 잔소리꾼이지만 때로는 허당 엄마를 부업으로, 하루하루를 열심히 사는 40대 꽃중년 아줌마입니다.




저작자 표시 비영리 변경 금지
신고

Comments : 댓글을 달아주세요

댓글을 달아 주세요

  1. 애독자 2016.06.01 13:25 신고 Address Modify/Delete Reply

    이번달도 잘 읽고 갑니다.
    drop test시 땅땅 떨어지는 그 굉음을 들을 수 있다면 좀 더 효과적이지 않을까 합니다.
    우리가 말로만 drop test drop test하지만 그 떨어지는 소리를 한 번 들으면 drop test에 대해 다시 생각해보지 않을까 합니다.


[건강한 반도체 이야기] 반도체 패키지 건강 검진항목, 2편


이번 달의 제목은 보시는 바와 같이 ‘추가 건강 검진항목’입니다. 사람도 건강 검진을 받고 필수는 아니지만 개인 상황에 따라 필요할 때에는 추가로 더 검사하게 됩니다. 예를 들어, 심각한 소음에 노출된 환경에 근무하시는 분들은 일반 청력검사가 아닌, 좀 더 정밀검사를 해야 하듯이 말이지요. 반도체 패키지에서는 보드레벨 신뢰성이 이러한 추가 건강 검진항목에 해당한다고 생각하면 될 것 같습니다. 그런데 사실 mobile application device가 반도체 시장(market)에 중요한 부분을 차지하게 된 2005년 이후로는 더는 추가가 아닌 필수 평가 항목으로 자리 잡아 가고 있는 실정입니다.


보드레벨 솔더 접합부 신뢰성 테스트 


자, 그럼 보드레벨의 어떤 항목을 평가할까요? 이미 눈치채셨겠지만 패키지는 그 자체로는 존재 의미가 없습니다. 주변 패키지와 상호 전기적 신호를 주고받음으로써 최종적인 전자제품의 기능을 할 수 있으려면 패키지는 반드시 보드에 실장해야 하지요. ‘패키지를 보드에 실장한다’는 것은 패키지의 신호 단자를 보드의 전송 선을 따라 다른 패키지의 신호 단자와 전기적으로 연결을 시키는 것이 ‘실장’인데요, 전기적으로 연결되는 부분이 리드 프레임(Lead frame) 패키지는 Cu lead이고 래미네이트(Laminated) 패키지는 솔더 볼(Solder ball)이 그 역할을 합니다. 접합 재료는 SnPb 합금인 Eutetic solder를 사용하다가 Pb가 환경규제물질로 정해지면서 Pb (Lead) free solder 재료가 주로 사용됩니다.


  • Trough hole type


  • Cu lead type ( J type, Gull type, MLF type )


  • Laminate 패키지 ( BGA / LGA )

▲ 다양한 패키지 보드간 대표적인 interconnection 형상


패키지 레벨 솔더 접합부 강도 테스트


보드레벨 솔더(solder) 접합부의 신뢰성 테스트를 하려면, 여러 가지 준비할 사항이 많고 비용도 많이 들어갑니다. (준비사항 및 필요한 실험장비에 대해서는 뒤에 다시 설명해 드릴게요) 그렇다 보니 BGA 패키지는 간단하게 패키지 레벨에서 솔더 볼(solder ball)이 서브스트레이트(substrate)에 잘 접합해 있는지 확인하는 방법이 있습니다. Ball shear / Ball pull test라고 부르는데요, 솔더 볼(solder ball)을 아래와 같은 방법으로 옆으로 밀거나 수직 방향으로 잡아당겨서 적당한 수준의 breaking force 값 이상을 가져야 하고, 볼(Ball)이 떨어져 나간 파단 면이 솔더(solder)여야 합니다. 간혹 파단 면이 솔더(solder) 내부가 아닌 메탈(metal) 면과 떨어질 수 있는데, 아래 표시한 대로 노출된 메탈 면적이 25% 이상이면 실패(fail)로 간주합니다. 


패키지가 점점 작고 얇아 지면서 BGA ball pitch도 0.5mm에서 0.4mm, 더 나아가 0.3mm로 줄어드는 경향이 있고, BGA ball 크기도 300㎛에서 180㎛로 점점 작아지다 보니, Ball pull test는 어려워서 주로 Ball shear test를 진행합니다. 


▲ 패키지 레벨 솔더 접합부 강도 테스트 종류


▲ 불량 모드별 합격 / 불합격 기준


보드 레벨 솔더 접합부 신뢰성 (수명) 테스트 종류


보드레벨 솔더 접합부의 신뢰성 테스트에는 크게는 아래와 같이 세 가지 종류가 있습니다. 패키지 레벨에서와 같은 열충격 조건, Mobile application device를 사용하다가 떨어뜨렸을 때의 낙하 충격 조건, 보드의 굽힘 하중 조건 등이 있습니다. 아래와 같이, 하중조건별 솔더(solder) 접합부에 가해지는 변형의 소스(source)와 불량 모드, 불량 메커니즘을 정리해 보았습니다.


▲ 보드레벨 신뢰성 테스트 종류 및 불량 모드 / 불량 메커니즘


보드레벨 신뢰성 테스트 절차


전반부에서 보드레벨 신뢰성 테스트를 하기 위해서는 준비할 사항도 많고 비용도 많이 든다고 말씀드렸지요. 그 전체적인 절차를 한눈에 보실 수 있도록 아래와 같이 순서도를 첨부해 보았습니다. 대략적으로는 패키지 및 보드 시료 준비 > SMT > 각종 보드레벨 신뢰성 테스트 진행 > 불량 수명에 대한 통계 분석 > 불량 모드 분석 > 최종 report 등의 순서로 진행합니다. 보시는 바와 같이 절차도 복잡하고 패키지 및 보드 디자인 및 보드 구매까지 준비해야 하는 사항도 많을 뿐만 아니라, TC 1000 cycle 같은 건은 최소 두 달 이상이 걸리기 때문에 실험계획 단계부터 마지막 결과 정리까지 3개월 이상이 걸립니다. 그래서 때에 따라서는 TC 3000 cycle 이상을 요청했을 때 1년 가까이 실험을 진행하는 사례도 종종 있곤 하지요.


▲ 보드레벨 신뢰성 테스트 절차 


보드레벨 신뢰성 실험을 위한 시료 제작에 필요한 요구 조건


1. 테스트용 보드 요구조건 : 각 패키지의 솔더 접합부 신뢰성은 패키지 및 사용하는 접합부의 재료나 형상뿐만 아니라 보드의 기계적 물성, 형상, 메탈(metal) 표면 특성 등에 밀접한 관계가 있으므로, 패키지의 보드레벨 성능을 보기 위해서는 표준화된 보드를 사용해야 합니다. JEDEC 규정을 보면 실제 application 별로 주로 사용되는 보드의 특성에 맞게 패키지 크기에 따라 보드 두께, Cu layer 수, 재료 측면에서의 기계적, 열적 특성, 접합이 되는 메탈 형상 및 조건 등이 자세히 나와 있습니다. 이렇게 보드를 규격화 해야만 실제 패키지 종류에 따른 성능을 상대적으로 평가할 수 있게 됩니다. 


2. Daisy chain으로 설계된 패키지와 보드 : 솔더 접합부의 신뢰성을 평가하기 위해서는 특별히 설계된 패키지와 보드가 필요합니다. 솔더 접합부의 신뢰성을 평가한다는 것은 수명을 평가한다고도 말합니다. 즉, 신뢰성 평가는 평가하기 위해 정해진 일정 시간이 지난 후의 불량 유무를 판별한다면 수명은 과연 언제 불량이 발생하는지 평가하므로, 패키지의 모든 솔더 접합부분들을 아래 그림들에서처럼 모두 전기적으로 연결할 수 있는 daisy chain 구조의 패키지와 보드가 필요하며, 전기적으로 모두 연결된 솔더 접합부의 전기 저항을 실험 동안 계속 측정함으로써, 불량이 언제 발생했는지 수명을 알 수 있습니다.


3. 솔더 접합부의 저항을 측정할 수 있는 DVM data acquisition 장비

4. 각종 하중 조건을 인가할 수 있는 장비


▲ Daisy chain top view 모식도 


▲ 패키지 보드 간 Daisy chain 단면 모식도 


지금까지 여러 가지 이야기를 했는데 소개 정도밖에 안 되었네요. ^^ 다음 달에는 TC, Drop, Bending 하중 조건에 대한 자세한 설명과, 불량 모드, 불량 분석 방법, 통계분석 방법 등등에 대해 자세히 더 설명해 드리려 합니다.




WRITTEN BY 손은숙

건강하고 다재다능한 명품 패키지 개발을 주업으로, 울트라 캡 잔소리꾼이지만 때로는 허당 엄마를 부업으로, 하루하루를 열심히 사는 40대 꽃중년 아줌마입니다.




저작자 표시 비영리 변경 금지
신고

Comments : 댓글을 달아주세요

댓글을 달아 주세요