안녕하세요, 앰코인스토리 독자 여러분! 완연한 봄이네요. 꽃 피고 따뜻한 날이 많아서, 필자는 겨우내 무거웠던 옷도 정리하고 봄맞이 대청소도 하면서 조금씩 봄을 즐기고 있습니다. 지난달에 언급했던, 원가절감에의 노력에 대한 이야기를 이어가겠습니다. 지난 호에는 재료에 대해 살펴봤다면, 이번에는 제조공정과 패키지 구조에 대해서 알아보도록 하겠습니다.


대면적화


반도체 장비들은 대부분 1년 365일 멈추지 않고 가동됩니다. 간혹 뉴스에서 반도체 공장에 정전이 발생해 큰 손해를 봤다는 소식을 접할 수 있는데요, 그만큼 세밀하고 민감한 공정이라 장비 역시 일정한 상태를 유지해야 합니다. 그래서 꺼지지 않고 항상 유지가 되어 있어야 하지요. 장비가 쉬지 않고 가동되고 있다면, 같은 시간 내 더 많은 제품을 생산해야 원가절감을 할 수 있습니다. 어떻게 하면 더 많은 제품을 생산할 수 있을까요?


첫 번째는 기판의 대면적화입니다. 말이 좀 생소하게 들릴 수 있지만 쉽게 말해 한 번에 많이 만들 수 있도록 넓은 면적의 기판을 사용하는 것입니다. 최종 제품의 크기는 작게는 수 mm에서, 크게는 수십 mm에 이릅니다. 그런 제품을 낱개로 작업하지 않고 여러 개가 배치된 스트립으로 만들어서 작업합니다. 일반적으로 패키징의 모든 공정은 스트립 단위로 이루어집니다. 와이어 본딩이나 플립칩 본딩을 시작해서 모든 공정이 마치기까지 스트립 단위로 공정이 진행되는데요, 앞서 설명한 대로 스트립 크기가 넓어져서 더 많은 패키징 개수를 한 번에 처리할 수 있다면, 공정 비용을 낮출 수 있습니다. 아래 그림은 <리드프레임 패키지의 스트립>입니다. 크기가 점점 더 커지면서 배치된 패키징 개수도 더 많아졌음을 알 수 있습니다. 그렇다면 여기서 질문이, 스트립 크기가 클수록 좋다면 지금보다 두 배 세 배 더 크게 만들면 되지 않을까요?

 

▲ QFN strip size


딱 잘라 말해, 그렇게 되면 패키징 공정이 어려워집니다. 몰딩 공정을 생각해 볼까요? 그림을 보면, EMC가 녹아서 금형 한쪽 끝에서 흘러들어 가서 빈 곳 없이 구석구석을 채우는데, 경화도 같이 진행됩니다. 요즘은 패키징 두께도 점점 얇아져서 EMC가 흘러가는 공간도 좁아지는데 전보다 더 먼 거리를 흐르면서 모든 공간을 채우는 것도 더 어려워지겠지요. 그래서 새로운 EMC를 개발하고 몰딩을 하는 장비도 그에 걸맞게 개선되어야 합니다.


몰딩을 해결했다고 해서 끝이 아닙니다. 스트립 크기가 커진 만큼 변형, Warpage도 같이 커질 수 있습니다. Warpage가 커지면 솔더볼을 붙일 때도 각각의 패키지로 자를 때에도 공정에 어려움이 따릅니다. 하지만 이 모든 수고를 통해 가격 경쟁력을 가질 수 있기에 계속 연구를 이어가고 있는 것이지요.


▲ Mold flow behavior in strip


▲ 몰딩 공정 후의 스트립 Warpage


패키징 구조


패키징 가격의 상당 부분은 기판(Substrate)이 차지합니다. 원가절감의 또 다른 시도는 기판의 가격을 낮추기는 데에 멈추지 않고 기판 자체를 생략하는데 이르렀습니다.


▲ 패키징 원가 구조 비교

사진출처 : https://goo.gl/yoYL4F


국내 외의 기판 제작 업체에서 만든 기판을 사용하지 않고, RDL (Redistribution Layer) 공정을 통해 패키징 업체에서 직접 기판을 제작하는 방식입니다. 이런 종류의 패키지를 WLP (Wafer Level Package)라고 부릅니다. Pre-preg와 Core 대신에 수 um 두께의 RDL, Passivation 등으로 기존의 Laminate 기판을 대체할 수 있습니다. 아울러 I/O 개수가 증가하는 추세를 따라잡기 위해 칩 크기보다 큰 FOWLP (Fan-out WL)에 대한 관심이 더 증가하고 있습니다.


▲ (좌)Fan-in vs Fan-out WLP 비교/(우)FOWLP 제조과정

사진출처 : (좌)https://goo.gl/xgJy1b/(우)https://goo.gl/RmNUcn


FOWLP의 장점은 기판 비용이 없어서 원가절감을 기대할 수 있습니다. FCCSP에 비해 Cu pillar 혹은 솔더범프와 같은 chip과 기판 사이의 Interconnection도 생략할 수 있습니다. 기판이 없기에 더 얇은 두께도 구현할 수 있습니다. 기판을 구성하는 두꺼운 절연체(pre-preg, Core)가 없기에 방열 효과 개선도 기대할 수 있습니다.


▲  FOWLP와 경쟁 패키지 사이즈 비교

사진출처 : https://goo.gl/yoYL4F


이렇게 기판을 생략하면, 당연히 기판을 생산하는 업체 입장에서는 고민을 넘어서 생존을 걱정해야 할 처지입니다. 국내외 기판 제조 업체에서 FOWLP에 대항할 수 있는 Panel FOWLP 개발하는 중인데요, FOWLP는 공정의 기본 단위인 Wafer 크기가 제한되어 있습니다. 현재 12인치 크기인데, 이보다 더 큰 Wafer 적용은 현실적으로 많은 어려움이 있습니다. Wafer 크기에 제한된 WLP 대신에 Panel FOWLP는 PCB기판을 사용하므로 Wafer보다 더 큰 면적을 사용할 수 있습니다. 아래 그림에서는 12인치 웨이퍼에 3배에 해당하는 면적으로 패키징할 수 있습니다. 원형의 Wafer에 비해 사각형의 Panel이 면적 활용율에 훨씬 좋습니다. 공정상에 발생할 수 있는 문제만 잘 해결된다면 WLP에 비해 분명 가격 경쟁력이 있는 것으로 평가되겠지요.


▲ Wafer와 Panel 면적 비교

사진출처 : https://goo.gl/mkKmmZ


▲ Wafer 및 Panel면적에 따른 원가 비교

사진출처 : https://goo.gl/yoYL4F


마무리하며


두 번에 걸쳐서 패키징에서 원가절감을 위해 어떤 노력과 연구를 하는지 살펴보았습니다. 아무래도 사람 마음은 조금이라도 더 싼 가격을 찾기 마련입니다. 어제보다 오늘에는 더 나은 기능과 더 낮은 가격을 기대하며 전자제품이 전시된 곳을 사람들은 유심히 쳐다보고 있습니다. 한 번에 끝나지 않고 패키징 업체의 숙명과도 같다고 생각합니다. 원가절감의 관점에서 패키징을 이해하는데 도움이 되었기를 바랍니다.


다음 호에는 또 어떤 이야기를 이어 나갈지 또 고민 속으로 빠져들 것 같군요! 부족함에도 제 이야기에 관심 가져 주시는 분들이 많으시더라고요. 좀 더 재미있고 유익한 내용으로 다시 찾아뵙겠습니다. (응원댓글은 언제나 환영입니다)




WRITTEN BY 정규익

청운의 푸른 꿈을 안고 앰코에 입사한 지 어느덧 만 10년이 되었군요. 10년이면 강산도 변한다는데 마음만은 늘 신입사원처럼 모든 일이 신기하고 궁금해서 즐겁게 일했으면 하는 바람입니다.




 

저작자 표시 비영리 변경 금지
신고

Comments : 댓글을 달아주세요

댓글을 달아 주세요

  1. 김은희 2017.04.18 08:09 신고 Address Modify/Delete Reply

    원가절감 가격 경쟁으로 패키지 사이즈가 커졌네요.
    제가 입사했을때는 스트립이 아담 사이즈였는데...
    요즘 작업하는 자재는 기본 74타입 이상으로 빅 사이즈...ㅎㅎㅎ
    반도체에서도 세월의 무게 느껴지네요.
    다음호을 기다리며...


반도체와 원가절감


안녕하세요, 앰코인스토리 독자 여러분! 2월이 가고 3월이 오고 있습니다. 추었던 겨울을 뒤로 한 채 따뜻한 봄이 오기를 간절히 바라봅니다. 얼마 전, 대형마트 한쪽에 전시된 가전제품 코너를 둘러봤습니다. 남자라서 그런지 다른 것보다 TV가 눈에 들어왔습니다. 얇고도 넓은 화면에서 탄성을 자아낼 만한 화려한 장면에 한동안 넋을 잃고 쳐다봤습니다. 예상보다 싼 가격에 꼭 사고 싶다는 마음이 좀처럼 떠나지 않았습니다. 불과 몇 년 전과 비교해도 성능은 더 좋아지고 화면 크기보다 가격은 반대로 그대로이거나 더 낮아졌습니다.


고등학교 시절, 아버지 몰래 들고 온 휴대전화를 자랑하던 친구가 있었는데 전화만 되던 벽돌보다 큰 핸드폰이 200만 원 가까이한다는 사실에 큰 충격을 받았습니다. 하지만 그때와 비교할 수 없을 정도로 최첨단의 휴대전화이지만 이상하게도 가격은 점점 더 낮아지고 있습니다. 왜 그럴까요? 많은 대답을 할 수 있겠지만 기술개발과 더불어 오늘 이야기할 주제인 ‘원가절감’이라고 하겠습니다. TV에 들어가는 반도체 패키지도 가격 경쟁력을 가지려면 원가절감을 피해갈 수 없겠지요. 그래서 이번 이야기에는 반도체 패키징에서 어떤 수고와 노력이 있는지에 대해서 이야기해 보려고 합니다. 그런데 할 이야기가 많아서, 오늘은 먼저 소재에 대한 이야기를 해볼게요!


반도체와 Gold wire


먼저, 반도체 패키징에 사용되는 소재를 살펴봅시다. 패키징에는 여러 가지 소재가 사용됩니다. 리드프레임이나 PCB와 같은 기판이 있겠고, EMC (epoxy mold compound), Die adhesive, Gold wire에 이르기까지 다양한 종류의 소재들이 사용됩니다. 이러한 소재들을 생산하는 업체들도 가격 경쟁력을 갖추기 위해 많은 노력을 하고 있지요. 그렇다면 패키징을 하는 업체 입장에서는 어떻게 하면 소재 비용을 줄일 수 있을까요?


첫 번째, 골드 와이어(Gold wire)가 있습니다. 이는 칩과 외부 입출력 단자를 전기적으로 연결해주는 역할을 합니다. 흔한 말로 ‘금값’이라고 하는데 그만큼 가격이 비싸지요. 지난 30여 년간의 금 가격의 변화를 보면 꾸준히 상승하고 있습니다. 반도체 패키지를 만들려는 고객 입장에서는 금값은 오르더라도 패키지 제작 비용이 같이 오르는 것은 원치 않겠지요. 그렇다면 가능한 한 Gold wire를 조금이라도 덜 쓰는 것이 원가절감에 큰 도움이 됩니다.


▲ 금 가격 변동 / Gold wire 지름에 따른 가격 비교

사진출처 : (좌)https://goo.gl/eIIPGG/(우)https://goo.gl/2D2TkE


보통 사람의 머리카락 두께는 50에서 100㎛ 정도라고 합니다. 패키지에 사용되는 Gold wire는 이보다 훨씬 얇은 25㎛ 이하입니다. 조금이라도 더 얇은 Gold wire를 쓴다면 그만큼 가격 경쟁력이 생기겠지요. 그런데 한도 끝도 없이 얇아질 수는 없습니다. 얇아진 만큼 전기적인 특성이 안 좋아지고 몰딩을 하는 동안 sweeping에 취약하여 인접한 wire와 합선이 되는 불량이 발생할 수도 있기 때문이지요.


▲ Wire Cost Savings Copper vs. Gold / 다양한 wire 소재들


금은 비싸니까 상대적으로 가격이 저렴한 소재도 있습니다. 대표적인 것인 구리(Cu)입니다. 구리가 아무리 비싸다 하더라도 금에 비할 바는 못되겠지요. 하지만 구리는 쉽게 산화가 되고 금에 비해 딱딱해서 공정에 많은 주의를 기울여야 합니다. 그 외에도 가격 경쟁력이 있는 다양한 소재의 wire들이 있습니다.


소재를 바꾸는 것 다음으로, Gold wire를 적게 쓰면 됩니다. 가능한 칩(chip)에 가까운 곳에 Wire를 연결하면 되겠지요. Chip을 기판 위에 붙이려면 일종의 접착제가 필요합니다. 이럴 때는 ‘에폭시(epoxy)’를 사용하는데요, Chip을 붙이는 동안 액상의 epoxy가 chip 바깥으로 일부 흘러나오게 됩니다. Wire를 본딩하는 곳이 chip에서 너무 가까워 epoxy가 묻는다면 제대로 본딩이 안 될 수도 있습니다. 에폭시 대신 필름 형태의 DAF (die attach film)을 사용한다면 wire를 상당히 짧게 할 수 있습니다. 또 하나 배선의 두께와 폭을 줄인다면 그만큼 wire를 짧게 할 수 있습니다. 그런데 기판의 배선을 두께와 폭을 줄이면 기판 제작 비용이 증가하니, 이것도 고려해서 설계해야 하겠지요.


▲ Bond finger위치 비교 Epoxy vs DAF / Bond finger pitch에 따른 wire length 비교


반도체와 Substrate


두 번째로 이야기 하고 싶은 소재는 기판(substrate)입니다. 기판 설계에 한 트렌드는 Core가 없는 Coreless입니다. 전통적인 기판은 두꺼운 Core를 중심으로 양쪽에 배선층을 적층합니다. Core가 없다면 가격이 감소하고 패키지 전체 두께를 낮출 수 있어서 많이 주목받고 있는 기술이지요. 언제나 그렇지만 세상에 쉽고 편한 길은 없습니다. 비교적 딱딱한 Core가 없어서 Warpage에 영향을 미칠 수 있고, 혹은 전기적 특성에도 문제가 발생할 수 있습니다. 따라서 다양한 분야에서 동시에 패키지 성능 평가가 필요합니다.


기판의 배선층이 많아질수록 제조하는 공정이 추가되므로 가격은 상승합니다. 배선층 수를 줄일 수만 있다면 이 역시 원가절감에 큰 도움이 되겠지요. ETS (Embedded Trace Substrate)라는 기술도 coreless 기판의 일종인데, Core 대신에 프리프레그(Pre-Preg)를 사용하고 배선층 수도 줄일 수 있어서 최근 주목받고 있는 기술입니다.


▲ Cored vs Coreless substrate 단면 비교 / Embedded trace substrate 단면 구조

사진출처 : (좌)https://goo.gl/8VNN1I/(우)https://goo.gl/wy8RWd


언젠가 방문했던 원자재 납품 업체 사무실 한쪽 벽 화이트보드에 이런 글이 쓰여 있었습니다. ‘원가절감, 줄이지 못하면 죽는다.’ 좀 무섭기도 한 표현인데요, 경쟁력을 갖추기 위해서는 원가절감은 선택이 아니라 필수가 되었습니다. 그래서 절박하고 결연한 의지를 표현한 것이라고 생각합니다. 가전제품 코너 앞에서 제품 가격표를 보고 마음을 졸이는 저 자신을 보면, 원가절감이 현업에서 참 중요한 일임을 새삼 느끼게 됩니다. 이번에는 소재를 가지고 이야기했다면 다음에는 제조공정 중에 어떤 기술들이 있는지를 살펴보도록 하겠습니다. 다음 호에서 만나요~!




WRITTEN BY 정규익

청운의 푸른 꿈을 안고 앰코에 입사한 지 어느덧 만 10년이 되었군요. 10년이면 강산도 변한다는데 마음만은 늘 신입사원처럼 모든 일이 신기하고 궁금해서 즐겁게 일했으면 하는 바람입니다.




저작자 표시 비영리 변경 금지
신고

Comments : 댓글을 달아주세요

댓글을 달아 주세요

  1. 김 은희 2017.04.04 21:32 신고 Address Modify/Delete Reply

    시티폰...삐삐...폴더 폰...

    그때 진짜 그 커다란 핸드폰을 자랑스럽게 남들 보란듯이 우쭐해서
    들고 다녔네요.

    잠시 옛 생각에 행복 했습니다,




(지난 호에서 이어집니다) 그리고 한 가지 더, 리드프레임 패키지보다 패키지 아래 전 면적에 입출력 단자를 배치시킬 수 있는데요, 이를 BGA(Ball Grid Array)라고 부릅니다. 빠지는 곳 없이 전 면적으로 빼곡히 채우고, BGA의 피치가 작아질수록 사용할 수 있는 입출력 단자의 개수도 많아집니다.


▲리드프레임 패키지의 와이어 본딩 연결


 

▲ 복잡한 PCB 설계

사진출처 : https://goo.gl/edkd7K


그렇다고 마냥 PCB만 선호할 수는 없습니다. 당연히 리드프레임보다 비싸지기 때문입니다. 배선층이 2개, 4개 등 한없이 많아질 수 있지만, 그만큼 만들기도 어렵습니다. 자, 이렇게 비유해 볼게요. 집 앞에 잠깐 나가서 음료수와 과자 몇 봉지를 사려는 데 결혼식에나 어울릴 법한 옷을 차려입지는 않겠지요. 그 반대의 상황에서도 마찬가지고요. 기판의 특성에 따라서 어떤 부분은 좋지만 반대로 그렇지 않은 특성들이 있습니다. 그래서 만들려고 하는 제품이 필요로 하는 성능과 가격 등을 따져서 선택하게 됩니다.


패키지 성능 평가와 설계


기판 설계까지 열심히 했는데 과연 그 패키지 제품이 고객이 원하는 만큼의 성능을 낼 수 있을지도 사전에 혹은 동시에 평가합니다. 그중에 하나는 열 특성 평가입니다. 앞서 다른 필자님이 소개한 내용에 패키지의 열 성능과 평가가 있었는데요, 그렇게 제품이 실제로 작동하게 될 장비 안에서 원하는 만큼의 열 성능을 낼 수 있을지를 평가합니다. 만약 만족을 못 한다면 패키지 소재를 바꾸거나 크기와 두께 등을 바꿔가면서 평가를 해봅니다. 그래도 안 된다면 패키지 구조를 바꾸거나 고객의 요구 조건을 좀 낮춰야 한다고 제안도 합니다.

그리고 두 번째는 전기적인 특성입니다. 가장 대표적인 평가 중 하나는 특성 임피던스입니다. 패키지가 작동하다 보면 원하지 않는 저항 성분이 발생하여 전송하는 신호의 손실을 주게 됩니다. 손실을 최소화할 수 있도록 특성 임피던스를 맞추기 위해 패키지 제품에 알맞은 설계값을 제공합니다.

세 번째는 변형과 파손에 대한 예측 평가입니다. 제품을 만드는 중에도 그렇고, 패키지를 실장할 때에도 패키지의 변형은 큰 골칫거리입니다. 온도가 변하면 열팽창이 일어나는데, 서로 다른 소재로 구성된 패키지는 그래서 열변형은 피할 수 없는 문제입니다. 변형만 일어나면 다행이지만 그것 때문에 내부에서 깨지고 끊어진다면 큰 손실입니다. 그래서 컴퓨터를 사용한 해석 덕분에 예측할 수 있는데요, 이것 역시 여러 소재를 바꾸거나 구조 변경을 통해서 허용 범위 내로 변형을 제한할 수 있습니다.


처음 입사했을 때에 한 선배가 하는 말이, 호랑이 담배 피우던 시절에는 너무 급해서 컴퓨터 CAD 대신에 제도판에서 자로 선을 그려 도면을 만든 적도 있다고 들었습니다. 아주 오래전의 일이지만, 그때 비해 기술은 훨씬 더 발전했고 과거에는 고려하지 않았던 무수한 일들을 설계 단계에서 고민하고 있습니다. 물론 위에서 설명하지 못한, 많은 설계 조건이 더 있습니다. 체계화된 설계 단계와 수많은 엔지니어의 경험까지 녹아들어 설계가 완성됩니다. 한 제품의 설계가 끝나고 무사히 생산이 잘 되었다는 소리를 들으면 누가 알아주지 않는다고 해도 마음이 뿌듯합니다.


이제, 다음에는 무슨 내용으로 이어갈까 고민 중입니다. 혹 댓글로 궁금한 내용이 있으시다면 남겨주세요. 참고해보겠습니다. (^_^) 그럼 다음 호에 만나요!




WRITTEN BY 정규익

청운의 푸른 꿈을 안고 앰코에 입사한 지 어느덧 만 10년이 되었군요. 10년이면 강산도 변한다는데 마음만은 늘 신입사원처럼 모든 일이 신기하고 궁금해서 즐겁게 일했으면 하는 바람입니다.




 

저작자 표시 비영리 변경 금지
신고

Comments : 댓글을 달아주세요

댓글을 달아 주세요

  1. 함초롬히 2017.02.13 05:34 신고 Address Modify/Delete Reply

    나의 반도체에 대한 지식은 "도체와 부도체의 중간 물질" 요기까지 인데...
    반도체에 대한 깊은 지식을 접할 수 있는 코너라 챙겨 보고 있습니다,
    마치 재미있는 미니 시리즈 기다리는 마음으로 3편을 기대하며...
    감사히 지식 담아 갑니다,

    • 정규익 2017.02.23 14:28 신고 Address Modify/Delete

      한 마디 인사가 글쓰는 사람에게는 큰 격려가 됩니다. 작지만 반도체 패키징을 이해하는데 도움이 되길 바랍니다.

  2. 2017.03.23 01:07 Address Modify/Delete Reply

    비밀댓글입니다

    • 정규익 2017.03.23 10:03 신고 Address Modify/Delete

      안녕하세요
      비밀댓글로 하셨는데 권한설정에 문제가 있는지 확인이 늦었습니다.

      열성능평가는 패키지 내부에 칩에서 발열할 때에 열이 외부로 얼마나 잘 전달되는지를 평가하는 것입니다. 요즘 다양한 종류의 CFD프로그램이 있고 IC패키징에 특화된 프로그램도 많이 있습니다. 유한요소 해석에 대한 이해만 있다면 프로그램이야 금방 익힐 수 있을텐데요. 학부 혹은 석사과정에서 열전달에 대한 이해가 우선되어야 하겠죠.

      패키지는 제조 과정은 물론 보드 실장할 때까지 다양한 온도 조건에 노출되는데요. 실리콘 칩을 비롯하여 다양한 소재로 구성되어 있는 만큼 온도 변화에 따라 열팽창계수 차이로 인해 변형이 일어나고 때에 따라서 큰 품질 문제로 이어집니다. 이 역시 일반적인 구조해석 프로그램을 사용하고 있습니다. 상용프로그램에 능숙한 것도 유리하지만 무엇보다 재료역학에 대한 기본이 튼튼해야 나중에 입사해서 일을 할 때도 어려움이 없습니다.

      질문하신 분이 하시는 분야가 Plastic injection molding 해석으로 보입니다. 말씀하시는대로 Molding공정을 위해 그와 같은 해석을 하고 있습니다. 앰코인스토리에서 예전 글을 보면 관련 내용이 있습니다. 온도와 시간에 따라 흐름성이 바뀌는 EMC가 패키지 내부에 채워지는 과정을 분석하는 일은 만만치 않습니다. 과거에 비해 패키지는 점점 더 작아지고 복잡해지다보니 이와 같은 몰딩공정도 어려워지고 시뮬레이션을 통한 다양한 연구의 필요성이 더욱 증가하고 있습니다. 해석 프로그램을 자유자재로 다루는 것도 좋지만 만약 이 분야를 발전시키시고 싶다면 재료 분석 분야에 더욱 내실을 다지면 좋겠습니다. 유변학에 대해서도 이론적으로 더욱 탄탄해지면 좋겠구요.

      충분한 답변이 되었는지는 모르겠습니다. 취업을 앞두고 막연한 두려움이 있겠지만 기본에 충실한 사람은 어딜 가서도 인정받고 환영받으리라 믿습니다. 하시는 공부와 연구에 좋은 결과가 있기를 바랍니다.

  3. 호호 2017.03.24 14:08 신고 Address Modify/Delete Reply

    위에 질문 달았던 학생입니다. 정말 자세한 답변 감사합니다.
    사실 이렇게 빠른 답변을 달아주실지 상상도 못했습니다. [건강한 반도체 이야기]부터 [반도체 이야기]까지 꼼꼼히 필기를 하며 공부를 하고 있습니다.

    저는 석사 과정 학생이고, 정규익 선생님께서 말씀하신대로 plastic injection molding 전공 학생입니다. 재료를 컴파운딩 및 블렌딩 하여 압출을 한 후, 사출을 통해 유변학적 분석을 하기도하고, 유동 거동을 예측 및 warpagee를 최소화 하기 위한 연구를 하고있습니다.

    선생님께서 이 분야를 발전시키기 싶다면 재료 분석 분야에 더욱 내실을 다지면 좋겠다고 말씀해주셨는데요. 조금만 더 구체적으로 가이드를 잡아주실 수 있으실까요? 말씀하시는 재료 분석이 유변학, 내충격석, 경도, 내스크래치성, 인장강도 등 재료에 관한 물성분석을 말씀하시는건지, 아니면 패키징을 하기 위한 재료를 분석을 하시라는건지 궁금합니다.
    바쁘실텐데 죄송하지만 마지막으로 질문 드리겠습니다. 답변 부탁드립니다 ㅎㅎ 감사합니다!

    • 정규익 2017.03.24 17:16 신고 Address Modify/Delete

      제가 쓴 글을 누군가가 열심히 공부하는 자료로 쓴다니 무거운 책임감을 또 느낍니다.
      반도체를 전공하는지 모르겠으나 말씀하신 warpage와 반도체 분야에서 warpage는 조금 다른 면이 있습니다. 패키지에 포함된 다양한 소재들의 열 물성 차이로 변형이 발생합니다. 이는 플라스틱 사출 후에 발생하는 warpage와 조금 다르지 않을까 합니다. 반도체 분야에 관심이 있다면 재료역학에 대해서도 공부하시면 좋을 것 같군요.

      말씀하신 유변학, 경도, 내충격성 등은 꼭 반도체 분야가 아니더라도 유용하게 사용할 수 있는 이론적 배경입니다. 제가 말씀드린 것은 플라스틱 사출 해석에 다양한 경험도 중요하겠지만 이를 지지하는 이론적 바탕이 탄탄해야 어떤 문제가 주어져도 길을 찾아갈 수 있는 능력을 갖출 수 있다고 생각합니다.

      반도체 분야에 계속 공부하고 도전하고 싶으면 재료역학(Mechanics)에 대해서도 관심을 가져보면 좋겠습니다. 추가로 궁금한 점이 있으면 Email주소를 남겨주세요.


패키지 설계


안녕하세요? 앰코인스토리 독자 여러분, [반도체 이야기]의 새로운 필자인 정규익 책임입니다. 2017년을 맞아 제가 새롭게 이야기를 이어 나가려고 해요. 저는 설계팀으로 입사해서 6년 정도 설계 업무를 했습니다. 입사하기 전까지는 패키지가 무엇인지도 몰랐습니다. 하지만 많은 분의 도움을 얻어서 패키지에 문외한이었던 제가 패키지 전반에 대해 잘 이해할 수 있었습니다. 그래서 첫 번째 이야기로, 패키지 설계에 관해 이야기해보려 합니다.


사전적 의미의 ‘설계’는 기계, 기구, 장치 등을 생산할 때 사용 목적에 만족하도록 기구, 구조, 각 부의 재료, 형상, 크기, 그 밖에 제작에 관한 일체의 것을 계획하고 결정하는 것이라고 되어 있습니다. 느낌만으로도 알 수 있는 단어인데 사전적 의미는 이렇게 복잡하네요. 반도체 패키징 산업이 시작한 이래로 수많은 종류의 패키지 제품들이 개발되었습니다. 오늘 말하는 ‘설계’는 이 제품 중 하나를 선택하여 거기에 알맞게 설계하는 일을 설명하려고 합니다.


그래서 필자는 설계의 첫 번째 단계를 패키지 종류 선정이라고 생각해요. 필요한 입출력 단자의 개수(I/O), 패키지 외형의 크기, 전기적 열적 특성, 그리고 무엇보다 중요한 가격까지, 여러 조건을 꼼꼼히 따져보면서 가장 알맞은 제품으로 선택하게 됩니다. 설계 전부터 이미 결정되기도 하지만, 간혹 앞서 말한 여러 조건 때문에 변경되기도 합니다.


기판 (Substrate) 설계


두 번째 단계로 기판(Substrate) 설계가 있습니다. 패키지 종류를 구분하는 기준 중 하나는 어떤 기판(substrate)을 사용하느냐입니다. 전통적으로 구리 동판에 에칭을 통해 배선을 만드는 방식인 리드프레임(Leadframe)이 있습니다. 상대적으로 값이 싸고 열적, 전기적 특성의 장점이 있어서 지금까지도 다양한 종류의 제품에 적용됩니다. 하지만 반도체 칩의 기능이 더욱 다양해지면서 필요한 입출력 단자는 점점 늘어가는데, 리드프레임 패키지의 구조적인 한계에 직면하게 되었습니다. 입출력 단자들이 패키지 외곽에만 있는데요, 더 많은 단자를 만들려면 그만큼 패키지는 더 커져야 하는 단점이 있습니다. 아래 그림처럼 한 줄 대신 두 줄, 그리고 다양한 형태의 입출력 단자를 만들어보지만 필요를 따라가기에는 어려움이 있습니다. 또한, 하나의 배선층만 사용할 수 있어서 설계에 어려움이 종종 있습니다.


▲ 리드프레임


▲ 다양한 종류의 리드프레임 패키지


반도체 패키징 관련 일을 하지 않아도 ‘PCB’라는 말은 한 번쯤 들어보셨을 것 같아요. PCB는 인쇄 회로 기판(Printed Circuit Board)이며 리드프레임의 단점을 많이 보완할 수 있지요. 그림을 통해 간단한 구조를 살펴볼까요.


▲ 여러 종류의 패키지 기판 (substrate)

사진출처 : https://goo.gl/o5Umpb


▲ PCB를 사용한 패키지와 단면 구조


기본적인 구조는, 전기적으로 절연된 소재를 사이에 두고 목적에 따라 설계한 배선층을 적층한 것입니다. 말로 설명하기에 좀 어렵군요! 자, 아래 그림을 보시면 리드프레임은 배선 설계의 제한 때문에 와이어 본딩(wire bonding)을 할 때는 가급적 가까운 리드 핀(Lead pin)으로 해야 합니다. 하지만 아래 붉은색처럼 반대편에 있는 핀으로 연결하려면, 불가능한 것은 아니겠지만 여러 가지 공정상이나 패키지 성능에도 문제가 될 수 있는데요, PCB는 여러 층으로 구성된 배선층과 각각의 배선층을 수직으로 연결해주는 Via를 통해 원하는 곳으로 연결할 수 있습니다. (다음 호에 계속)




WRITTEN BY 정규익

청운의 푸른 꿈을 안고 앰코에 입사한 지 어느덧 만 10년이 되었군요. 10년이면 강산도 변한다는데 마음만은 늘 신입사원처럼 모든 일이 신기하고 궁금해서 즐겁게 일했으면 하는 바람입니다.




저작자 표시 비영리 변경 금지
신고

Comments : 댓글을 달아주세요

댓글을 달아 주세요


앰코인스토리 독자 여러분, 안녕하세요? 2016년의 마지막을 장식할 반도체 패키지 이야기를 하려고 합니다. 패키징의 숙명이기도 한, 더 작고 더 얇게, 하지만 더 싸게 만들기 위해 연말에도 엔지니어들의 노력은 계속되고 있습니다. 한두 개만 만든다면, 혹은 시간의 여유까지 있다면 작고 얇게 만드는 것도 어렵지 않은 일입니다. 하지만 더 싸게 만들려면 대량 생산이 필요하고 만드는 시간도 아주 짧아야 합니다. 이 모든 요구 조건을 만족하게 하려면 패키징의 공정마다 더 섬세하고 민감한 관리를 필요로 하는 등, 이전보다 더 높은 수준의 기술이 필요하겠지요. 자, 오늘은 그중에서도 몰딩(Molding) 공정에 관해 이야기를 해보려고 합니다.


패키지를 보호하는 EMC


패키지 공정 중에는 몰딩이 있습니다. 몰딩은 금이나 구리로 된 와이어 등이 충격에 손상되지 않도록 보호하는 역할을 하는데요, 갑자기 몰딩 공정을 꺼낸 이유는 앞에서 말한 더 작고 얇게, 그리고 더 싸게 만드는데 많은 고민이 필요한 공정이기 때문입니다. 몰딩에 사용하는 소재는 EMC (Epoxy Mold Compound)입니다. 전체 무게의 80% 내외는 필러, 즉 돌가루로 채워져 있고 나머지는 에폭시와 여러 화학약품이 포함되어 있습니다.


▲ 몰딩 공정 순서도 / EMC (Epoxy Mold Compound)

사진출처 : (좌) https://goo.gl/aSMB4z/(우)https://goo.gl/ofJCVM


몰딩 공정의 관건은 짧은 시간 안에 몰딩 금형 내부를 완전히 채우는 것입니다. EMC의 구성 성분량에 따라 EMC의 흐름성에 영향을 미칠 수 있습니다. 흐름성이 달라진다면, EMC가 다 채워지지 않고 부분적으로 채워지지 않는 미충진 (Incomplete mold) 불량이 발생할 수 있습니다. EMC의 흐름에 영향을 미치는 요소는 또 있습니다. 패키지가 점점 얇아지면서 EMC가 흘러갈 수 있는 공간도 점점 좁아지고, 간혹 공정이 다 끝났음에도 반도체 칩 일부가 노출되는 경우도 있습니다. 플립칩(Flipchip)은 언더필(underfill)이 필요한데 언더필 대신에 EMC로 한 번에 몰딩하는 경우도 있습니다. 그러면 플립칩 아래에 촘촘하게 배열된 범프들 사이로 EMC가 채워져야 합니다. 더 싸게 만들려면 한 번에 여러 개를 몰딩해야 하겠지요. 그러려면 패키지가 배열되는 기판의 크기도 점점 더 커져야 할 텐데, 몰딩 공정의 입장에서는 여러모로 어려운 일이 됩니다. 자, 이 모든 어려움을 극복하고 열심히 일을 하는 엔지니어들에게 박수 한 번 보내주셔야 할 것 같습니다.


컴퓨터를 활용한 EMC 흐름 예측


문제가 발생하면 실험 계획법을 작성해서 가능한 여러 수단을 적용해 문제를 해결할 수 있습니다. 하지만 시간이 곧 돈이고 촉박한 개발 기간 내에 빨리 해결하기 위해서는 컴퓨터를 통해 불량 발생 예측을 해 볼 수 있습니다. Mold Flow analysis라고 하여 최근에 SIP(System In Package)와 같은 복잡한 구조의 패키지에 EMC 몰딩 과정을 모사하고 불량을 예측하는 경우가 많아졌습니다. EMC의 물성을 구한 다음 실제 EMC가 채워질 회로기판 전체를 모델링하여 컴퓨터로 해석을 하게 됩니다. 말은 쉬운데 이것도 좀 손이 많이 가는 작업입니다. 우선 물성을 구하기가 참 어렵습니다. 탄성 계수나 열팽창계수와 같이 간단한 물성이 아니라 EMC의 점성(Viscosity)과 경화(Curing kinetics)와 관련된 물성이 필요합니다. 온도, 압력, 시간, 속도 등에 따라 달라지며 복잡한 수식을 통해서 최종 필요한 물성을 계산해 냅니다.


▲ 온도에 따른 점성 거동 / 온도에 따른 경화도 거동

이미지출처 : Moldex3D material Library


요즘은 회로기판 크기가 점점 커지다 보니 Mold flow 해석을 하는데 아주 좋은 성능의 컴퓨터를 사용하더라도 수십 시간이 소요되기도 합니다. 자 그렇다면 이런 수많은 어려움을 차치하고 Mold flow 분석을 했는데 어떤 결과를 기대할 수 있을까요?


우선, 첫 번째로는 미충진에 대해서 예측할 수 있습니다. 실제로 미충진 불량이 발생한 제품이 있었습니다. 여러 해결 방법을 모색하기 전에 먼저 Mold flow 해석을 통해 실제와 같이 불량이 발생하는지 확인해보았습니다. 결과로 위치와 크기가 거의 유사한 결과를 얻었습니다.


▲ 불량 발생 위치와 Simulation 결과 일치

이미지출처 : 앰코코리아 사내 자료


▲ EMC 흐름

이미지출처 : 앰코코리아 사내 자료


두 번째로 앞서 검증을 완료하였다면, 이후에는 EMC 소재를 바꾼다거나 패키지 설계 변경, 몰딩 공정 조건 변경 등을 통해 불량을 해결할 방법을 평가해볼 수 있습니다. Mold flow 해석을 통해 얻을 수 있는 가장 중요한 장점입니다. 굳이 실험을 해보지 않더라도 시간과 노력을 줄여서 문제를 해결할 수 있기 때문입니다. 요즘에는 문제가 생기기도 전에 제품 개발 단계에서 미리 해석해봅니다. 만약 조금이라도 불량의 위험이 있다면 곧바로 대응할 수 있는 대안을 미리 세우려는 이유이지요.


크리스마스와 연말에는 사랑하는 가족과 감사를 전하고픈 분들께 크고 작은 선물을 준비합니다. 이번에는 남편에게 큰마음 먹고 최신형 스마트폰을 선물해보려고 합니다. 매끈한 외형과 HD 영상을 볼 수 있는 넓은 화면, 가격은 비싸지만 선물을 받고 즐거워할 가족을 생각하며 큰 결심을 했습니다. 그런데 누구 눈에는 무엇만 보인다는 말이 있지요. 최신형의 얇고 가벼운 스마트폰을 보면, 거기에 녹아 있는 많은 엔지니어의 수고가 느껴집니다. 저렇게 작고 얇게 만들려고 얼마나 고생을 했을까요. 더 얇고 작게 만들어야 하지만 언제나 그렇듯 가격은 더 싸져야 한다는 압박까지 고스란히 견디면서, 올 한해를 수고한 우리 앰코가족들의 수고도 기억했습니다. 한 해 동안 모두 수고 많으셨습니다. (^_^)




WRITTEN BY 손은숙

건강하고 다재다능한 명품 패키지 개발을 주업으로, 울트라 캡 잔소리꾼이지만 때로는 허당 엄마를 부업으로, 하루하루를 열심히 사는 40대 꽃중년 아줌마입니다.




저작자 표시 비영리 변경 금지
신고

Comments : 댓글을 달아주세요

댓글을 달아 주세요

  1. 조은애 2017.01.29 13:27 신고 Address Modify/Delete Reply

    제가 담당하는 몰드 공정 소개라 관심 집중하고 읽어 봅니다,
    헐,....
    매일 작업하면서 취급하는 EMC 역활이 이렇게 중요 했네요.
    EMC 취급함에 있어 SPEC 을 철처히 지겨야 겠네요,
    그래야 양품의 품질이 생산 될 수 있겠기에...
    또한,
    라인에서 늘 고생하시는 엔지니어 분들께도 감사의 말씀 전합니다,


패키지에서 온도를 낮추는 방법


(지난 호에서 이어집니다) 첫 번째는 열 방출이 좋은 패키지를 선택해야 합니다. 패키지 구조에 따라 열 저항이 큰 차이를 보입니다. 보드로 열 방출이 잘 되려면 MLF처럼 패키지 바닥 면에 금속판이 노출되거나 칩 위에 금속 방열판을 붙이는 FCBGA도 고려할 수 있습니다. 하지만 패키지를 선정할 때는 크기와 필요한 입출력 핀의 개수, 가격 등도 같이 고려해야 하므로 종합적으로 판단해서 패키지를 선정할 필요가 있습니다.


▲ 패키지 구조에 따른 열 저항 개선


두 번째는 열전도도가 높은 재료를 사용해야 합니다. 칩을 둘러싸고 있고 패키지 재료들의 열 전도도가 높아지면 그만큼 열 방출에 도움이 됩니다. 칩을 보호하는 EMC, 칩을 기판에 붙일 때 사용하는 에폭시(Epoxy), 언더필(Underfill), 기판의 코어 등등 높은 열전도도를 갖도록 개발하고 있습니다. 그렇다고 열전도도가 두 배, 세 배가 되었다고 그만큼 열 저항이 향상되지는 않습니다.


▲ 높은 열전도도 재료를 통한 열 저항 개선


PBGA라는 패키지가 있습니다. 열 저항 개선을 위해 높은 열전도도를 갖는 구리 소재의 방열판을 포함한 것이 TEPBGA2(Thermal Enhanced PBGA)입니다. 보통 EMC의 열전도도가 1W/mK 미만인데, 그에 반해 구리는 387W/mK 정도 됩니다. 패키지 크기에 따라 차이가 있지만, 보통 10~20% 정도의 열 저항 감소를 기대할 수 있습니다. 3W/mK 이상 높은 열 전도도의 EMC도 개발되어 사용하고 있습니다. TEPBGA2에 높은 열 전도도의 EMC를 사용한다면 열 저항을 훨씬 더 낮출 수 있습니다. 하지만 앞에서도 말했듯이, 소재가 비싸고 공정도 까다로워지므로 종합적으로 판단해서 패키지 종류와 재료를 선정해야 합니다.


CFD 프로그램을 활용한 패키지 열 성능 예측과 평가


고객들은 자신들이 개발하고 있는 제품이 문제없이 잘 만들어질 수 있고 동작할 수 있을까를 고민합니다. 발열 문제도 그중 하나고, 최근에는 더 부각되고 있습니다. 만약, 문제가 될 것 같다고 해서 모든 종류의 패키지를 다 만들어보고 열전도도가 좋은 재료들을 하나씩 적용하면서 실제로 테스트를 한다면 필요한 시간과 돈은 엄청납니다. 그래서 CFD (Computational fluid dynamics) 프로그램을 사용하여 패키지를 모사하고 같은 환경을 설정해서 실제로 패키지에 발생하는 열을 예측할 수 있습니다. 그렇다면 실제 테스트보다 훨씬 짧은 시간 내에, 저렴한 비용으로 패키지의 열 성능을 예측할 수 있습니다. 요즘은 프로그램도 많이 좋아지고 컴퓨터도 좋아져서 이른 시일 내에 고객의 요청에 대응합니다. 패키지뿐만 아니라 패키지가 사용된 복잡한 시스템에서도 예측할 수 있습니다.


▲ CFD프로그램을 사용하여 네트워크 장비의 열 성능 예측 시뮬레이션


지금까지 패키지의 발열 문제와 어떻게 하면 열을 낮출 수 있는지에 대해 알아봤습니다. 발열 문제를 해결하기 위해 패키지를 설계하는 팀, 재료를 개발하는 팀, 패키지의 열 성능을 평가하는 팀이 한데 어우러져, 고객에게 최적의 패키지를 제안하고 발열 문제를 해결해 갑니다.


따뜻함은 어느 누군가에게는 추위를 이길 수 있는 소중함이지만, 우리가 날마다 마주하고 있는 패키지에는 피하고 싶은 불청객입니다. 오늘도 어떻게 하면 패키지 온도를 조금 더 낮출 수 있을까 고민입니다만, 추워지는 날씨에 마음만은 따뜻함을 고이 간직하고 싶습니다. (^_^)




WRITTEN BY 손은숙

건강하고 다재다능한 명품 패키지 개발을 주업으로, 울트라 캡 잔소리꾼이지만 때로는 허당 엄마를 부업으로, 하루하루를 열심히 사는 40대 꽃중년 아줌마입니다.




저작자 표시 비영리 변경 금지
신고

Comments : 댓글을 달아주세요

댓글을 달아 주세요

  1. eng;r 2016.12.01 09:53 신고 Address Modify/Delete Reply

    항상 좋은 글 감사합니다.
    공정 eng;r로써 많이 배우고 갑니다.

  2. 양영호 2016.12.23 11:40 신고 Address Modify/Delete Reply

    많은 반도체관련 자료들이 있지만 여기가 제일 깔끔하고 잘 정리되어 있습니다.
    작성하느라고 많을 노력을 하셨을 것입니다.
    가끔씩 들러 자료도 보고 널리 알리겠습니다.^^


안녕하세요? 무더운 여름이 지나고 아침저녁으로는 선선하다 못해 두꺼운 옷을 빨리 꺼내야 할 것 같은 가을이 성큼 다가왔습니다. 가을의 풍성함과 아름다움을 충분히 느끼고 싶지만 단풍은 금방 떨어질 것 같고, 얼마 지나지 않아 추운 겨울이 곧 다가올 것만 같습니다. 추위를 이겨내려고 보온 성능이 뛰어난 옷을 준비하고 찬바람이 들어오지 않도록 집 안 구석구석을 살피는 일도 곧 해야 할 것 같습니다. 추워지면 따뜻한 온기는 더할 나위 없이 반갑지만 우리가 늘 고민하는 패키지에서는 달갑지 않은 손님입니다.


시간이 지날수록 패키징 기술의 수준도 그 끝이 어디까지일까 할 만큼 많이 발전하고 있습니다. 더 작아지고 얇아졌지만 더 많은 기능을 더 빨리 구현해 내고 있습니다. 하지만 끝없이 달려가던 기술력도 패키지의 열 문제를 무시하지 못하게 되었습니다. 발열 문제는 단순히 뜨거워지는 문제를 넘어 전자제품의 성능을 좌우하고 안전까지도 영향을 미치게 되었습니다. 어떤 고객사는 야심 차게 출시한 AP (Application Processor)의 발열 문제로 최대 고객에게 제품 납품에 실패했고, 이후 급격한 실적 악화와 구조조정의 아픔을 겪어야만 했습니다. 이렇듯 발열 문제는 칩 설계에서부터 최종 제품 설계에 있어서 중요한 요인이 되었습니다. 칩을 만드는 고객뿐만 아니라 패키징을 하는 앰코에서도 어떻게 하면 발열 문제를 해결하는 데 도움이 될지를 같이 고민하고 있습니다. 그렇다면 패키지에서는 왜 열이 발생하고 어떻게 하면 발열 문제 해결에 도움이 될지, 한 번 알아보도록 하겠습니다.


▲ 스마트폰의 발열

사진출처 : https://goo.gl/iJis0j


패키지에 열이 발생하는 이유


반도체 패키지 내부에 있는 칩을 동작시키려면 솔더볼 혹은 리드를 통해 칩에 전류를 흘려줍니다. 중고등학교 다닐 때 물리 시간을 기억하시나요? 에너지(Watt)는 전압(Voltage, V)과 전류(Current, I)의 곱으로 표현됩니다. P=V×I, 전류를 흘려주면 패키지에는 에너지가 전달되는 셈입니다. 그리고 이 에너지는 또 다른 형태로 변환이 될 텐데요, 우리가 승용차에 휘발유를 주유하면 차가 움직일 수 있고 밤에는 어둠을 밝히려고 전조등을 켭니다. 가끔은 졸음을 깨우려 시끄러운 음악을 틀기도 하고 춥거나 더우면 히터와 에어컨을 켤 수도 있습니다. 휘발유가 여러 형태의 에너지로 변환되었습니다. 그렇다면 반도체 패키지는 어떤 종류의 에너지로 변환이 되었을까요? 설마 패키지 안에서 칩이 움직이거나 소리를 지르지는 않겠지요?


칩으로 흘러들어 간 전류는 트랜지스터를 작동시키지만 대부분 열에너지로 변환이 됩니다. 문헌을 보면 95% 이상, 대부분 열로 변환된다고 합니다. 그렇다면 뜨거워지지 않게 스마트폰을 쓰면 되겠지만 100만 원 가까이하는 스마트폰인데 전화나 문자만 보내고 있을 수는 없겠지요. 요즘 스마트폰은 과거에 데스크톱에서나 가능했던 기능들, 예컨대 3D 게임이나 요즘은 가상현실(virtual reality)까지도 구현이 되는데요, 그러려면 필요한 에너지도 많아지겠고 칩 온도도 같이 올라갈 수밖에 없습니다. 그래서 칩을 설계하는 고객들은 저전력으로도 작동할 수 있도록 설계하겠지만, 패키징에서도 온도를 낮출 방법들을 같이 고민하고 있습니다.

   

▲ 고성능 스마트폰 기기들

사진출처 : (좌)https://goo.gl/Ai0pxh/(우)https://goo.gl/mSnBPu


패키지에서 열은 어떻게 전달될까요?


칩을 작동시키면 패키지에서 열이 발생하고 그 열은 패키지가 실장된 보드와 공기 중으로 열이 전달됩니다. 패키지의 구조와 어떤 재료를 사용하느냐에 따라서 얼마나 열이 잘 전달될 수 있는지 결정됩니다. 열 전달이 가장 잘 되는 것은 보드를 통한 전도입니다. 강제로 바람을 불어주거나 외부의 냉각 장치를 부착하지 않는다면 보통 90% 이상의 열이 보드를 통해 방출됩니다.


▲ 패키지의 열 전달 구조


전기 저항처럼 패키지의 열 성능을 평가하는 열 저항이 있습니다. 패키지가 실장되는 곳은 천차만별입니다. 워크스테이션, 벽걸이TV와 같이 큰 제품에서부터 우리가 쓰고 있는 작고 얇은 스마트폰까지, 패키지 주변 환경에 따라 열 저항은 얼마든지 달라질 수 있습니다. 그래서 JEDEC(국제 반도체 공학 표준 협의기구)이라고 하는 곳에서 보드(Board)의 크기와 구성, 열 저항을 측정하는 챔버 등에 대해서 표준화를 했고, 그 규정에 따라 열 저항을 측정하게 됩니다. 가장 기본적인 것으로 Theta JA가 있습니다. 칩을 작동시켰을 때에 칩 온도와 패키지를 둘러싸고 있는 대기의 온도 차이를 칩에 인가한 Power로 나눈 값입니다. Theta JA를 사용하면 칩 온도를 예측하거나 혹은 사용할 수 있는 최대 Power도 예측할 수 있습니다.



또 다른 열 저항으로는 Theta JC가 있습니다. 예를 들어, 컴퓨터 본체를 열면 그 안에 무지막지하게 큰 히트 싱크(Heat sink)와 팬(Fan)이 보입니다. 컴퓨터는 잘 몰라도 CPU는 한 번씩 들어보셨을 텐데요, CPU 속도가 빨라야 컴퓨터가 버벅거리지 않는다는 것도 아시겠지요. 



▲ 패키지 열저항 온도 측정 위치 & CPU 히트싱크와 팬


CPU의 성능이 좋아지면서 그만큼 더 많은 전력을 소비하고 열이 발생합니다. 열을 강제로 식히려고 히트 싱크를 부착하고 팬으로 바람을 불어줍니다. 이럴 때는 패키지와 보드 사이보다는 패키지와 히트 싱크 사이에 저항을 줄이는 것이 더 효과적인데요, 칩과 히트 싱크가 부착되는 패키지 표면의 저항, Theta JC가 중요합니다. 낮을수록 히트싱크와 팬의 효율이 높아져서 결국 패키지의 온도를 가장 효과적으로 낮출 수 있습니다. (다음 호에 계속됩니다)




WRITTEN BY 손은숙

건강하고 다재다능한 명품 패키지 개발을 주업으로, 울트라 캡 잔소리꾼이지만 때로는 허당 엄마를 부업으로, 하루하루를 열심히 사는 40대 꽃중년 아줌마입니다.




저작자 표시 비영리 변경 금지
신고

Comments : 댓글을 달아주세요

댓글을 달아 주세요