본문 바로가기

백종식23

디지털 반도체 디바이스, 두 번째 이야기 현대를 디지털문명이라고 부르는 만큼 디지털이라는 용어는 현대를 살아가는 사람들에게 매우 친숙하지만 정확한 의미를 이해하고 있는지에 대해서는 다시 한 번 생각해봐야 할 것입니다. 디지털(digital)이라는 말은 디짓(digit)이라는 용어에서 유래되었고, 이는 사람의 손가락이나 동물의 발가락을 의미합니다. 손가락이나 발가락은 하나, 둘, 셋, 넷, 다섯 등의 자연수로 셀 수 있고, 손가락을 셀 때 1.2개라든지 2.14개라는 식으로 세지는 않습니다. 이렇게 무엇인가를 셀 때 최소단위(손가락의 경우는 1개가 최소단위지요)의 정수배로만 나타내고 중간값(1.2나 2.14는 1의 정수배가 아니지요)을 허용하지 않는 것을 디지털이라고 합니다. 반면에 아날로그라는 것은 연속적인 값을 취하는 것을 말하는데, 디지털 .. 2015. 9. 16.
디지털 반도체 디바이스, 첫 번째 이야기 지난 8개월 동안 정말 숨 가쁘게 달려왔습니다. 전자공학의 역사를 살펴보고, 현대 물리학의 대표주자로써 인간의 사고의 틀을 확 바꿔버린 양자역학을 맛보았으며, 반도체의 물리적 특성들을 공부하는 등 일반인들이 접하기 어려운 지식을 다뤄봤습니다. 이러한 지식을 바탕으로 현대문명에 혁명을 가져온 반도체 다이오드와 트랜지스터의 원리까지 들여다보았습니다. 이제 여러분은 반도체에 대한 역사와 이론, 그리고 원리에 이르기까지 한눈에 조망할 수 있는 실력을 갖췄으리라고 기대합니다. 전자제품을 뜯어보면 뭔지 알 수 없는 수많은 부품들이 빼곡히 자리 잡고 있는 것을 알 수 있습니다. 각각의 부품들이 제 몫을 담당하고 있을 것인데, 그 기능을 크게 두 가지로 본다면 능동형 부품과 수동형 부품으로 나뉠 수 있습니다. 회로부품.. 2015. 9. 9.
MOSFET, 두 번째 반도체 이야기 (지난 호에서 계속 이어집니다) BJT에서도 PNP형 BJT가 있었고 NPN형 BJT가 있었던 것을 기억하시나요? MOSFET에서도 어떤 캐리어를 전류 흐름에 사용하느냐에 따라서 PMOS(P채널 MOSFET)과 NMOS(N채널 MOSFET)으로 나뉩니다. 소스와 드레인이 P형 반도체 영역이고 실리콘 기판이 N형 반도체 영역으로 되어 있는 것이 PMOS이고, 반대(소스의 드레인이 N형 반도체 영역이고 실리콘 기판이 P형 반도체 영역으로 되어 있는 것)로 되어 있는 것이 NMOS입니다. 눈치를 챘겠지만, PMOS에서는 정공이 전류를 이루는 캐리어가 되고 NMOS에서는 전자가 전류를 이루는 캐리어가 됩니다. 소스와 드레인 사이, 게이트 밑 부분을 채널이라고 부릅니다. PMOS에서는 P형 채널이 형성될 것이고,.. 2015. 8. 19.
MOSFET, 첫 번째 반도체 이야기 FET(전계효과 트랜지스터) 지난번에는 pnp접합(또는 npn접합)을 통해 BJT(바이폴러 접합트랜지스터)가 만들어지는 원리를 살펴보았습니다. 하지만 역시 BJT는 이해하기가 다소 어려웠지요. 오늘날, 눈부시게 발달한 디지털 문명의 주인공인 마이크로프로세서와 메모리 등에 주로 사용되는 핵심 부품으로서의 또 다른 트랜지스터가 소개될 것인데, 지난 호의 BJT에 비해 그리 어렵지 않으니 긴장을 푸시기 바랍니다. 이번에는 FET(전계효과 트랜지스터)를 살펴보려고 합니다. 지난 호의 BJT와 동작원리가 전혀 다르지요. BJT(바이폴러 접합트랜지스터)에서는 이름에서 알 수 있듯, 전자와 정공이 모두 사용되는 쌍극성(바이폴러) 트랜지스터이지만, FET는 전자와 정공 중 하나의 캐리어만 사용하는 단극성 트랜지스터로써.. 2015. 8. 12.
pnp접합과 바이폴라 접합트랜지스터(BJT), 첫 번째 이야기 지난 호에 p형 반도체와 n형 반도체를 한 면에서 접촉해 다이오드(pn 접합다이오드)를 만들어 보았습니다. 생각보다 복잡하고 이해하기 까다로웠을 것입니다. 다시 한 번 정리하자면, p형 반도체 쪽에 +전압이, n형 반도체 쪽에 –전압이 걸리면 순방향 바이어스가 되어 전류가 흐르지만, 반대로 전압이 걸리면 역방향 바이어스가 되어 전류가 흐르지 않는데, 이를 설명하기 위해 각 반도체 영역의 다수 캐리어와 소수 캐리어의 거동에 대해 지난 호에 설명했습니다. 이러한 pn 접합다이오드의 대략적인 모식도와 기호는 아래 그림과 같습니다. 이번 호에는 한 발 더 나가서, 그렇게 만들어진 다이오드 2개를 붙여 pnp(또는 npn) 접합트랜지스터를 만들어 보려고 합니다. 지난 호의 내용이 아직도 이해가 되지 않았다면 다시.. 2015. 7. 14.
반도체 이야기, Pn 접합과 다이오드 - 두 번째 이야기 (지난 호에서 이어집니다) 정공이 다수캐리어인 p형 반도체(흰 점으로 표시된 것이 정공입니다)와 전자가 다수캐리어인 n형 반도체(검정 점으로 표시된 것이 전자입니다)가 한 면에서 만났습니다. 만나기 전에는 각각의 다수캐리어들은 균일하게 분포하여 있었습니다. 물론 이온화된 도너 또는 억셉터도 균일하게 분포하여 있으며, 각각의 반도체는 전기적으로 중성인 상태입니다. (p형 반도체에서는 음이온과 정공의 수가 같고, n형 반도체에서는 양이온과 전자의 수가 같으므로 전기적으로는 중성입니다) 그러다가 한 면에서 두 반도체가 만나면 접합면 부근의 정공(p형 반도체의 다수캐리어)과 전자(n형 반도체의 다수캐리어)가 서로 끌려 오다가 만나겠지요. (이때, 이온화된 도너나 억셉터는 움직이지 않고 고정되어 있음에 유의하세요.. 2015. 6. 15.