본문 바로가기

반도체 상식6

반도체 제조 공정, 두 번째 반도체 이야기 (지난 호에서 이어집니다) 포토리소그래피(photolithography)는 옵티컬 리소크래피(optical lithography) 또는 UV 리소크래피라고도 불리며 반도체 공정에서 박막(薄膜)이나 기판(基板)의 선택된 부분을 패터닝(patterning)하는데 사용합니다. 사전에 원하는 패턴이 형성되어 있는 포토마스크(photomask)에 빛을 쏴서 그 밑에 있는 웨이퍼 위에 그림자가 생기게 하고(이 과정을 노광이라고 부릅니다), 그 그림자 패턴은 빛이 사라지면 사라지므로 웨이퍼 상에 그림자 패턴이 남아있도록 하는 방법이 필요합니다. 웨이퍼 상에 감광성(感光性) 재료(포토레지스트 또는 레지스트라고 부릅니다. 빛을 받은 부분이 잘 녹아나는 성질로 변하는 레지스트를 포지티브 레지스트라고 부르고, 잘 녹아나는 .. 2015. 11. 25.
반도체 제조 공정, 첫 번째 반도체 이야기 지난 열 달 동안 반도체의 물리적 이론과 소자의 이해 및 최종 제품에 대해서 살펴보았는데요, 이제 이 제품들이 제조라인에서 어떻게 만들어지는지에 대해 살펴보도록 하겠습니다. 하나의 반도체 제품이 탄생하기까지는 수많은 과정을 거쳐야 합니다. 여기에서는 설계 등은 고려하지 않고 공정에 대해서만 살펴보고자 합니다. 공정은 크게, 웨이퍼 제조 공정, 소자(디바이스) 제조 공정, 그리고 마지막으로 우리 회사가 가장 잘하는 패키징 및 테스트 공정으로 나눌 수 있습니다. 이 중에 웨이퍼 제조 공정은 이전 호에서 다루었으므로 소자 제조 공정과 패키징 및 테스트 공정에 대해서 다루겠습니다. 반도체 소자도 여러 가지가 있지만, 가장 많이 생산되고 있는 MOSFET 소자의 공정에 대해 살펴보겠습니다. 소자 제조 공정은 다시.. 2015. 11. 18.
Low-Profile Quad Flat Pack (LQFP) Low-Profile Quad Flat Pack (LQFP)앰코는 패키지 두께가 1.4mm이면서 MQFP와 같은 뛰어난 특성을 제공하는 LQFP패키지를 생산하고 있다. 이 패키지를 이용함으로써 패키지 엔지니어들, 부품 선택 제공자, 시스템 디자이너들은 보드 밀도 증가, 칩 크기 축소, 얇은 제품, 그리고 휴대의 용이성 등과 같은 문제들을 해결할 수 있다.앰코의 LQFP는 ASIC, DSP, 컨트롤러, 프로세서, Gate array(FPGA/PLD), SRAM과 PC 칩셋 등과 같은 거의 모든 반도체 기기에 적용할 수 있다. LQFP는 특히 가볍고 광범위한 성능 특성을 요구하는 휴대 전자기기에 적합하다. 예를 들어, 노트북, 비디오·오디오, 텔레콤, 무선˙RF, 자료처리, 사무실 기기, 디스크 드라이브, .. 2015. 8. 21.
MOSFET, 두 번째 반도체 이야기 (지난 호에서 계속 이어집니다) BJT에서도 PNP형 BJT가 있었고 NPN형 BJT가 있었던 것을 기억하시나요? MOSFET에서도 어떤 캐리어를 전류 흐름에 사용하느냐에 따라서 PMOS(P채널 MOSFET)과 NMOS(N채널 MOSFET)으로 나뉩니다. 소스와 드레인이 P형 반도체 영역이고 실리콘 기판이 N형 반도체 영역으로 되어 있는 것이 PMOS이고, 반대(소스의 드레인이 N형 반도체 영역이고 실리콘 기판이 P형 반도체 영역으로 되어 있는 것)로 되어 있는 것이 NMOS입니다. 눈치를 챘겠지만, PMOS에서는 정공이 전류를 이루는 캐리어가 되고 NMOS에서는 전자가 전류를 이루는 캐리어가 됩니다. 소스와 드레인 사이, 게이트 밑 부분을 채널이라고 부릅니다. PMOS에서는 P형 채널이 형성될 것이고,.. 2015. 8. 19.
pnp접합과 바이폴라 접합트랜지스터(BJT), 첫 번째 이야기 지난 호에 p형 반도체와 n형 반도체를 한 면에서 접촉해 다이오드(pn 접합다이오드)를 만들어 보았습니다. 생각보다 복잡하고 이해하기 까다로웠을 것입니다. 다시 한 번 정리하자면, p형 반도체 쪽에 +전압이, n형 반도체 쪽에 –전압이 걸리면 순방향 바이어스가 되어 전류가 흐르지만, 반대로 전압이 걸리면 역방향 바이어스가 되어 전류가 흐르지 않는데, 이를 설명하기 위해 각 반도체 영역의 다수 캐리어와 소수 캐리어의 거동에 대해 지난 호에 설명했습니다. 이러한 pn 접합다이오드의 대략적인 모식도와 기호는 아래 그림과 같습니다. 이번 호에는 한 발 더 나가서, 그렇게 만들어진 다이오드 2개를 붙여 pnp(또는 npn) 접합트랜지스터를 만들어 보려고 합니다. 지난 호의 내용이 아직도 이해가 되지 않았다면 다시.. 2015. 7. 14.
반도체 이야기, Pn 접합과 다이오드 - 두 번째 이야기 (지난 호에서 이어집니다) 정공이 다수캐리어인 p형 반도체(흰 점으로 표시된 것이 정공입니다)와 전자가 다수캐리어인 n형 반도체(검정 점으로 표시된 것이 전자입니다)가 한 면에서 만났습니다. 만나기 전에는 각각의 다수캐리어들은 균일하게 분포하여 있었습니다. 물론 이온화된 도너 또는 억셉터도 균일하게 분포하여 있으며, 각각의 반도체는 전기적으로 중성인 상태입니다. (p형 반도체에서는 음이온과 정공의 수가 같고, n형 반도체에서는 양이온과 전자의 수가 같으므로 전기적으로는 중성입니다) 그러다가 한 면에서 두 반도체가 만나면 접합면 부근의 정공(p형 반도체의 다수캐리어)과 전자(n형 반도체의 다수캐리어)가 서로 끌려 오다가 만나겠지요. (이때, 이온화된 도너나 억셉터는 움직이지 않고 고정되어 있음에 유의하세요.. 2015. 6. 15.